首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Elimination of influenza virus-infected cells during primary influenza virus infections is thought to be mediated by CD8(+) T cells though perforin- and FasL-mediated mechanisms. However, recent studies suggest that CD8(+) T cells can also utilize TRAIL to kill virally infected cells. Therefore, we herein examined the importance of TRAIL to influenza-specific CD8(+) T cell immunity and to the control of influenza virus infections. Our results show that TRAIL deficiency increases influenza-associated morbidity and influenza virus titers, and that these changes in disease severity are coupled to decreased influenza-specific CD8(+) T cell cytotoxicity in TRAIL(-/-) mice, a decrease that occurs despite equivalent numbers of pulmonary influenza-specific CD8(+) T cells. Furthermore, TRAIL expression occurs selectively on influenza-specific CD8(+) T cells, and high TRAIL receptor (DR5) expression occurs selectively on influenza virus-infected pulmonary epithelial cells. Finally, we show that adoptive transfer of TRAIL(+/+) but not TRAIL(-/-) CD8(+) effector T cells alters the mortality associated with lethal dose influenza virus infections. Collectively, our results suggest that TRAIL is an important component of immunity to influenza infections and that TRAIL deficiency decreases CD8(+) T cell-mediated cytotoxicity, leading to more severe influenza infections.  相似文献   

2.
Bifunctional antibodies with specificity for the TCR/CD3 complex as well as to a target cell-surface Ag can redirect CTL to lyse the target cell. We have produced a hybrid hybridoma, HHA6, which secretes bifunctional antibodies capable of redirecting CTL to lyse influenza virus-infected target cells. When added along with CTL to virus-infected cells, these antibodies very efficiently inhibit multicycle virus replication. Because hybrid hybridomas reassort H and L chains randomly we attempted to purify bifunctional antibody by using HPLC. The purification increased the potency of HHA6. This increase probably reflects an enrichment of the active species and the removal of inhibiting antibody species.  相似文献   

3.
A novel influenza A virus mitochondrial protein that induces cell death.   总被引:35,自引:0,他引:35  
While searching for alternative reading-frame peptides encoded by influenza A virus that are recognized by CD8+ T cells, we found an abundant immunogenic peptide encoded by the +1 reading frame of PB1. This peptide derives from a novel conserved 87-residue protein, PB1-F2, which has several unusual features compared with other influenza gene products in addition to its mode of translation. These include its absence from some animal (particularly swine) influenza virus isolates, variable expression in individual infected cells, rapid proteasome-dependent degradation and mitochondrial localization. Exposure of cells to a synthetic version of PB1-F2 induces apoptosis, and influenza viruses with targeted mutations that interfere with PB1-F2 expression induce less extensive apoptosis in human monocytic cells than those with intact PB1-F2. We propose that PB1-F2 functions to kill host immune cells responding to influenza virus infection.  相似文献   

4.
The generation of human cytotoxic T cell clones with specificity for influenza virus and some of their characteristics are described. The clones were generated by limiting dilution of peripheral blood lymphocytes after two in vitro stimulations with autologous influenza A/USSR virus-infected cells and were grown in T cell growth factor. The majority of the virus-specific clones showed cross-reactivity for different influenza A virus subtypes but did not recognize influenza B virus-infected cells. The HLA specificity of two clones was further analyzed. One clone, LL33, was specific for HLA-Bw60, the other, clone WH5, for HLA-A1. Clone WH5 also seemed to recognize the serologically related HLA-A26 as restriction element for the recognition of the viral antigen. Whereas the virus-specific CTL clones had the OKT3+,4-,8+ phenotype, another clone, WH 49, exhibiting natural killer-like activity, was found to have the OKT3+,4+,8- phenotype.  相似文献   

5.
We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.  相似文献   

6.
We have recently shown that murine target cells can be sensitized for lysis by class I-restricted influenza virus-specific cytotoxic T lymphocytes (CTL) using noninfectious influenza virus. Sensitization is dependent on inactivation of viral neuraminidase activity (which can be achieved by heating virus); and requires fusion of viral and cellular membranes. In the present study, we have examined recognition of antigens derived from heat-treated virus by cloned CTL lines induced by immunization with infectious virus. Target cells sensitized with heat-treated virus were recognized by all 11 CTL clones that were specific for internal virion proteins (nucleoprotein and basic polymerase 1), and by one of six clones specific for the major viral glycoprotein (the hemagglutinin). Immunization of mice with heat-treated virus primed their splenocytes for secondary in vitro CTL responses. CTL generated in this manner recognized target cells infected with recombinant vaccinia virus expressing cloned influenza virus gene products. These findings indicate that both integral membrane proteins and internal proteins that comprise virions can be processed by antigen-presenting cells for recognition by class I-restricted CTL. It also appears that not all hemagglutinin determinants recognized on virus-infected cells are presented by cells sensitized with heat-treated virus.  相似文献   

7.
Qin G  Liu Y  Zheng J  Ng IH  Xiang Z  Lam KT  Mao H  Li H  Peiris JS  Lau YL  Tu W 《Journal of virology》2011,85(19):10109-10116
γδ T cells are essential constituents of antimicrobial and antitumor defenses. We have recently reported that phosphoantigen isopentenyl pyrophosphate (IPP)-expanded human Vγ9Vδ2 T cells participated in anti-influenza virus immunity by efficiently killing both human and avian influenza virus-infected monocyte-derived macrophages (MDMs) in vitro. However, little is known about the noncytolytic responses and trafficking program of γδ T cells to influenza virus. In this study, we found that Vγ9Vδ2 T cells expressed both type 1 cytokines and chemokine receptors during influenza virus infection, and IPP-expanded cells had a higher capacity to produce gamma interferon (IFN-γ). Besides their potent cytolytic activity against pandemic H1N1 virus-infected cells, IPP-activated γδ T cells also had noncytolytic inhibitory effects on seasonal and pandemic H1N1 viruses via IFN-γ but had no such effects on avian H5N1 or H9N2 virus. Avian H5N1 and H9N2 viruses induced significantly higher CCL3, CCL4, and CCL5 production in Vγ9Vδ2 T cells than human seasonal H1N1 virus. CCR5 mediated the migration of Vγ9Vδ2 T cells toward influenza virus-infected cells. Our findings suggest a novel therapeutic strategy of using phosphoantigens to boost the antiviral activities of human Vγ9Vδ2 T cells against influenza virus infection.  相似文献   

8.
The M2 protein of influenza A virus is a small, nonglycosylated transmembrane protein that is expressed on surfaces of virus-infected cells. A monoclonal antibody specific for the M2 protein was used to investigate its expression in polarized epithelial cells infected with influenza virus or a recombinant vaccinia virus that expresses M2. The expression of M2 on the surfaces of influenza virus-infected cells was found to be restricted to the apical surface, closely paralleling that of the influenza virus hemagglutinin (HA). Membrane domain-specific immunoprecipitation indicated that the M2 protein was inserted directly into the apical membrane with transport kinetics similar to those of HA. In polarized cells infected with a recombinant vaccinia virus that expresses M2, we found that 86 to 93% of surface M2 was restricted to the apical domain compared with 88 to 90% of HA in a similar assay. These results indicate that the M2 protein undergoes directional transport in the absence of other influenza virus proteins and that M2 contains the structural features required for apical transport in polarized epithelial cells. The ultrastructural localization of the M2 protein in influenza virus-infected MDCK cells was investigated by immunoelectron microscopy using M2 antibody and a gold conjugate. In cells in which extensive virus budding was occurring, the apical cell membrane was labeled with gold particles evenly distributed between microvilli and the surrounding membrane. In addition, a significant fraction of the M2 label was apparently associated with virions. A monoclonal antibody specific for HA demonstrated a similar labeling pattern. These results indicate that M2 is localized in close proximity to budding and assembled virions.  相似文献   

9.
10.
为明确E61-24-P15 A型重组流感病毒的第189代传代子病毒(IVpi-189)是否具备流感病毒温度敏感减毒活疫苗候选株的特点,将IVpi-189病毒感染MDCK细胞,并于不同培养温度条件下培养,观察其致细胞病变效应,病毒合成、释放情况,以及不同温度条件下病毒存活时间。结果显示32℃培养温度下,IVpi-189病毒具有等同于亲代野生病毒株的诱导细胞病变能力,而当培养温度上调至38℃,IVpi-189病毒致细胞病变效果出现缓慢且程度明显减轻。空斑形成单位实验发现IVpi-189病毒在38℃培养条件下增殖能力明显下降,其原因与病毒灭活速度及子病毒释放无关,但与感染细胞病毒合成能力下降有关。上述实验结果初步证实流感病毒持续感染细胞系来源的IVpi-189病毒具有温度敏感减毒活疫苗的生物学特性,在许可培养温度条件下具有良好的增殖能力,而在非许可培养温度下,病毒增殖活性受到明显抑制。本研究为流感病毒减毒活疫苗的开发研制提供实验佐证。  相似文献   

11.
Two different subsets of T cells, Th1 and Th2 cells, have been demonstrated to secrete different profiles of cytokines and to influence various infections in different ways. Whereas cytokines secreted by Th1 cells, particularly gamma interferon, promote the generation of cell-mediated immunity, Th2 cells and their cytokines (interleukin-4 [IL-4], IL-5, IL-10, and IL-13) have been shown to function in recovery from parasitic infections and in antibody responses. In this study, we analyzed the effects of the dominant Th2 cytokine, IL-4, on immunity to virus infection. We assessed the effects of IL-4 on both secondary immune responses by an adoptive transfer assay and primary immune responses by in vivo treatment of influenza virus-infected mice with IL-4. The results demonstrated that IL-4 can function to inhibit antiviral immunity at both stages. We found that IL-4 treatment of sensitized cells during secondary stimulation in vitro had little effect on their ability to lyse virus-infected target cells in a 51Cr release assay. Nevertheless, the clearance of influenza A/PR/8/34 (H1N1) virus from the lungs of infected BALB/c mice was significantly delayed after the transfer of virus-specific T cells secondarily stimulated in the presence of IL-4 in comparison to virus clearance in recipients of cells stimulated in the absence of IL-4. In contrast to the adoptive transfer results, the treatment of PR8 virus-infected mice with IL-4 during primary infection greatly suppressed the generation of cytotoxic T-cell precursors, as assessed by secondary stimulation in vitro. In addition, culture supernatants of secondarily stimulated spleen cells from IL-4-treated mice contained significantly less gamma interferon and more IL-4 than did spleen cells from controls. More importantly, the treatment of mice with IL-4 resulted in an extremely significant delay in virus clearance. Thus, IL-4 can inhibit both primary and secondary antiviral immune responses.  相似文献   

12.
R A Lamb  S L Zebedee  C D Richardson 《Cell》1985,40(3):627-633
The influenza A virus M2 protein is expressed abundantly at the cell surface, and in addition to the hemagglutinin (HA) and neuraminidase (NA), is a third virus-specific membrane protein. M2 has an internal hydrophobic membrane anchorage domain and associates with the same cellular membrane fractions as HA and NA. Trypsin treatment of infected cells and immunoprecipitation with site-specific antisera indicate that a minimum of 18 NH2-terminal amino acids of M2 are exposed at the cell surface. Ten NH2-terminal residues are conserved in all strains of influenza A virus for which sequences are available. Antibodies can recognize M2 on the cell surface and therefore it may be an infected-cell surface antigen. We discuss properties of M2 that match it to the elusive major target molecule on influenza A virus-infected cells for cross-reactive cytotoxic T cells.  相似文献   

13.
Virus-specific cytotoxic T lymphocytes (CTL) are thought to be responsible for the eradication of respiratory influenza virus infections by direct cytolysis of virus-infected epithelial cells. In this study, we provide evidence for a role for alveolar macrophages (AM) in the regulation of pulmonary virus-specific CTL responses. Prior to infection with influenza virus, AM were selectively eliminated in vivo with a liposome-mediated depletion technique, and virus-specific CTL activities of lung and mediastinal lymph node (MLN) cells were assayed ex vivo and compared with those for normal mice. AM depletion resulted in increased primary CTL responses and changed the kinetics of the CTL response. Flow cytometric analysis of lung and MLN cells showed that the percentage of CD8+ cells was not altered after AM depletion and that lung cells from AM-depleted mice had an increased capacity to lyse virus-infected cells. Upon restimulation in vitro, virus-specific CTL activity in lung cells of normal mice was similar to that in lung cells of AM-depleted mice. Furthermore, elimination of AM resulted in increased virus titers in the lung, but virus clearance as a function of time was not affected. Our results show that AM regulate virus-specific CTL responses during respiratory influenza virus infection by removing viral particles, by downregulating the priming and activity of CTL in MLN cells, and by inhibiting the expansion of virus-specific CTL in the lung.  相似文献   

14.
15.
Some cultured cell lines undergo typical apoptosis upon infection with influenza virus. However, the release of replicated virus into the culture medium does not change when apoptosis is inhibited. Since apoptotic cells are heterophagically eliminated at early stages of the apoptosis pathway, we anticipated that the coexistence of phagocytic cells with virus-infected cells affects the extent of virus growth. When influenza A virus-infected HeLa cells were mixed with activated mouse peritoneal macrophages, efficient phagocytosis, which was abrogated in the presence of a caspase inhibitor, occurred. At the same time, the release of virus into the culture medium was completely inhibited, and this required direct contact between virus-infected cells and macrophages. Furthermore, an immunoelectron microscopic analysis detected influenza virus particles associated with phagosome-like structures within macrophages. These results indicate that apoptosis-dependent phagocytosis of virus-infected cells may lead to direct elimination of the pathogen.  相似文献   

16.
We have investigated the mechanisms involved in the clearance of viral infection at the epithelium level by analyzing the activity of influenza virus-specific cytotoxic T lymphocytes (CTL) against virus-infected CMT-93 intestinal epithelial cells. Epithelial cells infected with live influenza virus effectively present viral antigens and were lysed by both homotypic and heterotypic influenza virus-specific CD8+ T cells. These results shed new light on the control of viral infection through the elimination of virus-infected epithelial cells by virus-specific CTL and demonstrate that CMT-93 cells furnish an appropriate model for in vitro evaluation of CTL activity against virus-infected epithelial cells.  相似文献   

17.
18.
Mouse hepatitis virus (MHV)-specific T-lymphocyte clones were established from MHV-infected BALB/c mice. They expressed Thy1 and Lyt2 antigens but lacked L3T4 and NK1 antigens. The clones killed MHV-infected but not uninfected or influenza virus-infected J774.1 cells. The specificity was further defined by a cold-target competition test.  相似文献   

19.
We investigated the interleukin-8 (IL-8)-producing activity of influenza A NWS virus in cultured rat kidney NRK-52E cells and a rat influenza model. The production of rat IL-8 increased significantly in the virus-infected cells but not in UV-inactivated virus- or split-product-treated cells. The increase in IL-8 production could be detected in the bronchoalveolar lavage of infected rats. These data suggest that infectious virus has the potential to accelerate the production of IL-8 in cultured cells and in vivo in airway-lining cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号