首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human ATP‐binding cassette (ABC) transporter superfamily consists of 48 integral membrane proteins that couple the action of ATP binding and hydrolysis to the transport of diverse substrates across cellular membranes. Defects in 18 transporters have been implicated in human disease. In hundreds of cases, disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs). The functional impact of the majority of ABC transporter nsSNPs has yet to be experimentally characterized. Here, we combine experimental mutational studies with sequence and structural analysis to describe the impact of nsSNPs in human ABC transporters. First, the disease associations of 39 nsSNPs in 10 transporters were rationalized by identifying two conserved loops and a small α‐helical region that may be involved in interdomain communication necessary for transport of substrates. Second, an approach to discriminate between disease‐associated and neutral nsSNPs was developed and tailored to this superfamily. Finally, the functional impact of 40 unannotated nsSNPs in seven ABC transporters identified in 247 ethnically diverse individuals studied by the Pharmacogenetics of Membrane Transporters consortium was predicted. Three predictions were experimentally tested using human embryonic kidney epithelial (HEK) 293 cells stably transfected with the reference multidrug resistance transporter 4 and its variants to examine functional differences in transport of the antiviral drug, tenofovir. The experimental results confirmed two predictions. Our analysis provides a structural and evolutionary framework for rationalizing and predicting the functional effects of nsSNPs in this clinically important membrane transporter superfamily.  相似文献   

2.
The mitochondrial ADP/ATP carrier (AAC) is a prominent actor in the energetic regulation of the cell, importing ADP into the mitochondria and exporting ATP toward the cytoplasm. Severe genetic diseases have been ascribed to specific mutations in this membrane protein. How minute, well-localized modifications of the transporter impact the function of the mitochondria remains, however, largely unclear. Here, for the first time, the relationship between all documented pathological mutations of the AAC and its transport properties is established. Activity measurements combined synergistically with molecular-dynamics simulations demonstrate how all documented pathological mutations alter the binding affinity and the translocation kinetics of the nucleotides. Throwing a bridge between the pathologies and their molecular origins, these results reveal two distinct mechanisms responsible for AAC-related genetic disorders, wherein the mutations either modulate the association of the nucleotides to the carrier by modifying its electrostatic signature or reduce its conformational plasticity.  相似文献   

3.
Peptide maps were generated of the CNBr-digested mitochondrial phosphate-transport protein and ADP/ATP carrier from bovine and rat heart, rat liver and blowfly flight muscle. Total mitochondrial proteins from the same sources plus pig heart were separated by SDS-polyacrylamide gel electrophoresis. The peptide maps and the total mitochondrial proteins were electroblotted onto nitrocellulose membranes and reacted with rabbit antisera raised against the purified bovine heart phosphate-transport protein and the ADP/ATP carrier. On the basis of antibody specificity, mobility in SDS-polyacrylamide gel electrophoresis, and peptide maps the following was concluded. Phosphate-transport protein alpha and phosphate-transport protein beta (pig and bovine heart) react equally with the first and also with the second of two independent phosphate-transport protein-antisera. Tissue-specific structural domains exist for both the phosphate-transport protein and the ADP/ATP carrier, i.e., one phosphate-transport protein-antiserum reacts with the phosphate-transport protein from all assayed sources, the other only with the cardiac phosphate-transport protein. These differences may reflect tissue-specific regulation of phosphate and adenine nucleotide transport. Homologies among the different species are found for the phosphate transport protein and the ADP/ATP carrier, except for the flight muscle ADP/ATP carrier. These conserved structural domains of the phosphate-transport protein may relate directly to catalytic activity. Alkylation of the purified phosphate-transport proteins and the ADP/ATP carriers by the transport inhibitor N-ethylmaleimide affects electrophoretic mobilities but not the antibody binding. Neither of the two phosphate-transport protein-antisera nor the ADP/ATP-carrier antiserum react with both phosphate transport protein and ADP/ATP carrier, even though these two proteins possess similarities in primary structure and function. Possible mechanisms for generating tissue-specific structural differences in the proteins are discussed.  相似文献   

4.
Ulla B. Rasmussen  Hartmut Wohlrab 《BBA》1986,852(2-3):306-314
Peptide maps were generated of the CNBr-digested mitochondrial phosphate-transport protein and ADP/ATP carrier from bovine and rat heart, rat liver and blowfly flight muscle. Total mitochondrial proteins from the same sources plus pig heart were separated by SDS-polyacrylamide gel electrophoresis. The peptide maps and the total mitochondrial proteins were electroblotted onto nitrocellulose membranes and reacted with rabbit antisera raised against the purified bovine heart phosphate-transport protein and the ADP/ATP carrier. On the basis of antibody specificity, mobility in SDS-polyacrylamide gel electrophoresis, and peptide maps the following was concluded. (1) Phosphate-transport protein and phosphate-transport protein β (pig and bovine heart) react equally with the first and also with the second of two independent phosphate-transport protein-antisera. (2) Tissue-specific structural domains exist for both the phosphate-transport protein and the ADP/ATP carrier, i.e., one phosphate-transport protein-antiserum reacts with the phosphate-transport protein from all assayed sources, the other only with the cardiac phosphate-transport protein. These differences may reflect tissue-specific regulation of phosphate and adenine nucleotide transport. (3) Homologies among the different species are found for the phosphate transport protein and the ADP/ATP carrier, except for the flight muscle ADP/ATP carrier. These conserved structural domains of the phosphate-transport protein may relate directly to catalytic activity. (4) Alkylation of the purified phosphate-transport proteins and the ADP/ATP carriers by the transport inhibitor N-ethylmaleimide affects electrophoretic mobilities but not the antibody binding. (5) Neither of the two phosphate-transport protein-antisera nor the ADP/ATP-carrier antiserum react with both phosphate transport protein and ADP/ATP carrier, even though these two proteins possess similarities in primary structure and function. Possible mechanisms for generating tissue-specific structural differences in the proteins are discussed.  相似文献   

5.
6.
Structural location of disease-associated single-nucleotide polymorphisms   总被引:7,自引:0,他引:7  
Non-synonymous single-nucleotide polymorphism (nsSNP) of genes introduces amino acid changes to proteins, and plays an important role in providing genetic functional diversity. To understand the structural characteristics of disease-associated SNPs, we have mapped a set of nsSNPs derived from the online mendelian inheritance in man (OMIM) database to the structural surfaces of encoded proteins. These nsSNPs are disease-associated or have distinctive phenotypes. As a control dataset, we mapped a set of nsSNPs derived from SNP database dbSNP to the structural surfaces of those encoded proteins. Using the alpha shape method from computational geometry, we examine the geometric locations of the structural sites of these nsSNPs. We classify each nsSNP site into one of three categories of geometric locations: those in a pocket or a void (type P); those on a convex region or a shallow depressed region (type S); and those that are buried completely in the interior (type I). We find that the majority (88%) of disease-associated nsSNPs are located in voids or pockets, and they are infrequently observed in the interior of proteins (3.2% in the data set). We find that nsSNPs mapped from dbSNP are less likely to be located in pockets or voids (68%). We further introduce a novel application of hidden Markov models (HMM) for analyzing sequence homology of SNPs on various geometric sites. For SNPs on surface pocket or void, we find that there is no strong tendency for them to occur on conserved residues. For SNPs buried in the interior, we find that disease-associated mutations are more likely to be conserved. The approach of classifying nsSNPs with alpha shape and HMM developed in this study can be integrated with additional methods to improve the accuracy of predictions of whether a given nsSNP is likely to be disease-associated.  相似文献   

7.
In this study, we identified the most deleterious nsSNP in CDKN2A gene through structural and functional properties of its protein (p16INK4A) and investigated its binding affinity with cdk6. Out of 118 SNPs, 14 are nsSNPs in the coding region and 17 SNPs were found in the untranslated region (UTR). FastSNP suggested that 7 SNPs in the 5' UTR might change the protein expression levels. Sixty-four percent of nsSNPs are found to be damaged in PolyPhen server among the 14 nsSNPs investigated. With this effort, we modeled the mutant p16INK4A proteins based on these deleterious nsSNPs, out of which three nsSNPs associated p16INK4A had RMSD values of greater than 3.00 A with native protein. From a comparison of total energy of these three mutant proteins, we identified that the major mutation is from Aspartic acid to Tyrosine at the residue position of 84 of p16INK4A. Further, we compared the binding efficiency of both native and mutant p16INK4A with cdk6. We found that mutant p16INK4A has less binding affinity with cdk6 compared to native type. This is due to ten hydrogen bonds and eight salt bridges which exist between the native type and cdk6, whereas the mutant type makes only nine hydrogen bonds and five salt bridges with cdk6. Based on our investigation, we propose that the SNP with the ID rs11552822 could be the most deleterious nsSNP in CDKN2A gene, causing malignant melanoma, as it was well correlated with experimental studies carried out elsewhere.  相似文献   

8.
The rat liver mitochondrial phosphate transporter contains a 44-amino acid presequence. The role of this presequence is not clear since the ADP/ATP carrier and the brown fat uncoupling protein, related members of a family of inner membrane anion transporters, lack a presequence and contain targeting information within the mature protein. Here, we present evidence that the rat liver mitochondrial phosphate transporter can be synthesized in vitro, imported into mitochondria, and processed to a protein of Mr 33,000. Import requires the membrane potential and external nucleotide triphosphate. The presequence inserts into the outer mitochondrial membrane, and import proceeds via a process similar to other proteins destined for the inner membrane or matrix. A mutant phosphate transporter lacking 35 amino acids at the NH2 terminus of the presequence has little capacity for mitochondrial import. The rat liver phosphate transporter is also imported and processed by rat kidney mitochondria and by mitochondria from the yeast Saccharomyces cerevisiae. A site-directed mutation of the N-ethyl-maleimide reactive cysteine 41 does not affect import or processing. The results presented show that optimal import of the mitochondrial phosphate transporter, unlike the ADP/ATP carrier and the brown fat uncoupling protein, is dependent on a presequence. As these carriers are believed to have evolved from a single gene, it seems likely that the H+/Pi carrier, known to be present in prokaryotes, appeared first and that subsequent evolutionary events leading to the other anion carriers eliminated the presequence.  相似文献   

9.
Abstract Membrane proteins that transport ATP and ADP have been identified in mitochondria, plastids, and obligate intracellular parasites. The mitochondrial ATP/ADP transporters are derived from a broad-specificity transport family of eukaryotic origin, whereas the origin of the plastid/parasite ATP/ADP translocase is more elusive. Here we present the sequences of five genes coding for ATP/ADP translocases from four species of Rickettsia. The results are consistent with an early duplication and divergence of the five ATP/ADP translocases within the rickettsial lineage. A comparison of the phylogenetic depths of the mitochondrial and the plastid/parasite ATP/ADP translocases indicates a deep origin for both transporters. The results provide no evidence for a recent acquisition of the ATP/ADP transporters in Rickettsia via horizontal gene transfer, as previously suggested. A possible function of the two types of ATP/ADP translocases was to allow switches between glycolysis and aerobic respiration in the early eukaryotic cell and its endosymbiont.  相似文献   

10.
The computational approaches in determining disease-associated Non-synonymous single nucleotide polymorphisms (nsSNPs) have evolved very rapidly. Large number of deleterious and disease-associated nsSNP detection tools have been developed in last decade showing high prediction reliability. Despite of all these highly efficient tools, we still lack the accuracy level in determining the genotype–phenotype association of predicted nsSNPs. Furthermore, there are enormous questions that are yet to be computationally compiled before we might talk about the prediction accuracy. Earlier we have incorporated molecular dynamics simulation approaches to foster the accuracy level of computational nsSNP analysis roadmap, which further helped us to determine the changes in the protein phenotype associated with the computationally predicted disease-associated mutation. Here we have discussed on the present scenario of computational nsSNP characterization technique and some of the questions that are crucial for the proper understanding of pathogenicity level for any disease associated mutations.  相似文献   

11.
Previous studies have shown that ATP is required for the growth of the intracellular parasite, Plasmodium, outside its host cell, the erythrocyte, and that bongkrekic acid, an inhibitor of mitochondrial ATP/ADP transporter, inhibits intraerythrocytic Plasmodium maturation. We have characterized ATP/ADP transport of Plasmodium falciparum, isolated by either immune lysis or N2-cavitation. [3H]ATP uptake was due to ATP/ADP exchange since ADP efflux was dependent on exogenous ATP in an approximate 1:1 stoichiometry and both ATP influx and ADP efflux were equally inhibited by atractyloside (Ki = 100 nM). ATP uptake was not inhibited by the nucleoside transport inhibitor, nitrobenzylthioinosine. Conversely, adenosine and hypoxanthine transport were insensitive to atractyloside. ATP influx was characterized by a Km = 0.14 mM and Vmax = 1.2 nmol ATP/min/10(6) cells. Substrate specificity studies for nucleotide-induced ADP efflux indicated a preference for an adenosine ring and triphosphate, but transport did not require a hydrolyzable phosphate bond. Protein synthesis was measured with free parasites starved of glucose. Addition of 1.0 mM ATP resulted in a 40% recovery of total protein synthetic capacity in a process inhibited by 500 nM atractyloside, suggesting that uptake of erythrocyte-derived ATP by P. falciparum may be essential for maintaining maximal rates of protein synthesis during specific stages of intra-erythrocytic parasite maturation.  相似文献   

12.
Members of the mitochondrial carrier (MC) family of membrane transporters play important roles in cellular metabolism. We previously established an in vitro reconstitution system for membrane transporters based on wheat germ cell-free translation system. We have now applied this reconstitution system to the comparative analysis of MC proteins from the malaria parasite Plasmodium falciparum and Saccharomyces cerevisiae. We synthesized twelve putative P. falciparum MCs and determined the transport activities of four of these proteins including PF3D7_1037300 protein (ADP/ATP translocator), PF3D7_1004800 protein (ADP/ATP translocator), PF3D7_1202200 protein (phosphate carrier), and PF3D7_1241600 protein (S-adenosylmethionine transporter). In addition, we tested the effect of cardiolipin on the activity of MC proteins. The transport activities of the yeast MCs, ScAac2p, ScGgc1p, ScDic1p, ScPic1p, and ScSam5p, which localize to the mitochondrial inner membrane, were increased by cardiolipin supplementation, whereas that of ScAnt1p, which localizes to the peroxisome membrane, was not significantly affected. Together, this indicates that the functional properties of the reconstituted MCs reflect the lipid content of their native membranes. Except for PF3D7_1241600 protein, these P. falciparum proteins manifested cardiolipin-dependent transport activities. Immunofluorescence analysis showed that PF3D7_1241600 protein is not mainly localized to the mitochondria of P. falciparum cells. We thus revealed the functions of four MC proteins of the malaria parasite and the effects of cardiolipin on their activities.  相似文献   

13.
AAC1 and AAC2 genes in yeast each encode functional ADP/ATP carrier (AAC) proteins of the mitochondrial inner membrane. In the present study, mitochondria harboring distinct AAC proteins and the pet9 Arg96 to HIS mutant (Lawson, J., Gawaz, M., Klingenberg, M., and Douglas, M. G. (1990) J. Biol. Chem. 265, 14195-14201) protein have been characterized. In addition, properties of the different AAC proteins have been defined following reconstitution into proteoliposomes. Deletion of AAC2 but not AAC1 causes a major reduction in the mitochondrial cytochrome content and respiration, and this level remains low even when the level of AAC1 protein is increased to 20% that of the AAC2 gene product. In reconstitution studies, the rate of nucleotide transport by isolated AAC1 protein is approximately 40% that of the AAC2 protein. Thus, the lack of mitochondrial-dependent growth supported by the AAC1 gene product alone may be due to the combination of low abundance and reduced activity. Surprisingly, analysis of the Arg96 to His mutant protein revealed binding and transport activities similar to the functional AAC1 and AAC2 gene products. These observations are discussed in relation to a molecular analysis of this highly conserved small transporter and its function in conjunction with other proteins in the mitochondrial membrane.  相似文献   

14.
The mitochondrion is one of the defining characteristics of eukaryotic cells, and to date, no eukaryotic lineage has been shown to have lost mitochondria entirely. In certain anaerobic or microaerophilic lineages, however, the mitochondrion has become severely reduced that it lacks a genome and no longer synthesizes ATP. One example of such a reduced organelle, called the mitosome, is found in microsporidian parasites. Only a handful of potential mitosomal proteins were found to be encoded in the complete genome of the microsporidian Encephalitozoon cuniculi, and significantly no proteins of the mitochondrial carrier family were identified. These carriers facilitate the transport of solutes across the inner mitochondrial membrane, are a means of communication between the mitochondrion and cytosol, and are abundant in organisms with aerobic mitochondria. Here, we report the characterization of a mitochondrial carrier protein in the microsporidian Antonospora locustae and demonstrate that the protein is heterologously targeted to mitochondria in Saccharomyces cerevisiae. The protein is phylogenetically allied to the NAD+ transporter of S. cerevisiae, but we show that it has high specificity for ATP and ADP when expressed in Escherichia coli. An ADP/ATP carrier may provide ATP for essential ATP-dependent mitosomal processes such as Hsp70-dependent protein import and export of iron-sulfur clusters to the cytosol.  相似文献   

15.
Non-mitochondrial ATP transport   总被引:14,自引:0,他引:14  
Exchange of organelle ATP with cytosolic ADP through the ADP/ATP carrier is a well-characterized feature of mitochondrial metabolism. Obligate intracellular bacteria, such as Rickettsia prowazekii, and higher-plant plastids possess another type of adenylate transporter, which exchanges bacterial or plastidic ADP for ATP from the eukaryotic (host cell) cytoplasm. The bacterial and plastidic transporters are similar but do not share significant sequence similarities with the mitochondrial carrier. Recent molecular and biochemical studies are providing deeper insight into the functional and evolutionary relationships between the bacterial and the plant transport proteins.  相似文献   

16.
When present in high copy number plasmids, the nuclear genes MRS3 and MRS4 from Saccharomyces cerevisiae can suppress the mitochondrial RNA splicing defects of several mit- intron mutations. Both genes code for closely related proteins of about Mr 32,000; they are 73% identical. Sequence comparisons indicate that MRS3 and MRS4 may be related to the family of mitochondrial carrier proteins. Support for this notion comes from a structural analysis of these proteins. Like the ADP/ATP carrier protein (AAC), the mitochondrial phosphate carrier protein (PiC) and the uncoupling protein (UCP), the two MRS proteins have a tripartite structure; each of the three repeats consists of two hydrophobic domains that are flanked by specific amino acid residues. The spacing of these specific residues is identical in all domains of all proteins of the family, whereas spacing between the hydrophobic domains is variable. Like the AAC protein, the MRS3 and MRS4 proteins are imported into mitochondria in vitro and without proteolytic cleavage of a presequence and they are located in the inner mitochondrial membrane. In vivo studies support this mitochondrial localization of the MRS proteins. Overexpression of the MRS3 and MRS4 proteins causes a temperature-dependent petite phenotype; this is consistent with a mitochondrial function of these proteins. Disruption of these genes affected neither mitochondrial functions nor cellular viability. Their products thus have no essential function for mitochondrial biogenesis or for whole yeast cells that could not be taken over by other gene products. The findings are discussed in relation to possible functions of the MRS proteins in mitochondrial solute translocation and RNA splicing.  相似文献   

17.
Energy parasitism by ATP/ADP transport proteins is an essential, common feature of intracellular bacteria such as chlamydiae and rickettsiae, which are major pathogens of humans. Although several ATP/ADP transport proteins have so far been characterized, some fundamental questions regarding their function remained unaddressed. In this study, we focused on the detailed biochemical analysis of a representative ATP/ADP transporter (PamNTT1), from the amoeba symbiont Protochlamydia amoebophila (UWE25) to further clarify the principle of energy exploitation. We succeeded in the purification of the first bacterial nucleotide transporter (NTT) and its functional reconstitution into artificial lipid vesicles. Reconstituted PamNTT1 revealed high import velocities for ATP and an unexpected and previously unobserved stimulating effect of the luminal ADP on nucleotide import affinities. Latter preference of the nucleotide hetero-exchange is independent of the membrane potential, and therefore, PamNTT1 not only structurally but also functionally differs from the well-characterized mitochondrial ADP/ATP carriers. Reconstituted PamNTT1 exhibits a bidirectional orientation in lipid vesicles, but interestingly, only carriers inserted with the N-terminus directed to the proteoliposomal interior are functional. The data presented here comprehensively explain the functional basis of how the intracellular P. amoebophila manages to exploit the energy pool of its host cell effectively by using the nucleotide transporter PamNTT1. This membrane protein mediates a preferred import of ATP, which is additionally stimulated by a high internal (bacterial) ADP/ATP ratio, and the orientation-dependent functionality of the transporter ensures that it is not working in a mode that is detrimental to P. amoebophila. Heterologous expression and purification of high amounts of PamNTT1 provides the basis for its crystallization and detailed structure/function analyses. Furthermore, functional reconstitution of this essential chlamydial protein paves the way for high-throughput uptake studies in order to screen for specific inhibitors potentially suitable as anti-chlamydial drugs.  相似文献   

18.
The N-terminal formic acid fragment (FA1) of the N-[3H]ethylmaleimide-labeled and carboxymethylated bovine mitochondrial phosphate transport protein (PTPN*CM) has been purified and completely sequenced: NH2-Ala-Val-Glu-Glu-Gln-Tyr-Ser-Cys-Asp-Tyr10-Gly-Ser-Gly-Arg-Phe- Phe-Ile-Leu-Cys- Gly20-Leu-Gly-Gly-Ile-Ile-Ser-Cys-Gly-Thr-Thr30-His-Thr -Ala-Leu-Val-Pro-Leu-Asp- -Leu-Val40-Lys-Cys(N-[3H]ethylmaleimide)-Arg-Met-Gln-Val-Asp- COOH. By thermolysin digestion of FA1 and high-performance liquid chromatography isolation of the radioactive subfragment Leu39-Arg43, the sole N-ethylmaleimide-binding residue has been identified as Cys42. FA1 contains a high mole percentage of cysteine (8.5%) and shows silver staining anomaly. Its sequence reveals significant homology in the triplicated gene regions (Pro27,132,229) of the mitochondrial ADP/ATP carrier from beef heart and Neurospora crassa. The hydropathic profile suggests that FA1 contains a transmembrane segment (Phe15-Val40) with only one basic (His31) and one acidic (Asp38) residue. The presence of the phosphate transport protein gene among nuclear genes is suggested from a lack of significant homology between the reverse-translated FA1 (mitochondrial codons) and the bovine mitochondrial genome. The inhibitory action of N-ethylmaleimide on the phosphate transport mechanism is discussed.  相似文献   

19.
Plasmodium falciparum mitochondrial ADP/ATP transporter or adenylate translocase (PfAdT) was previously characterised at the molecular level and intracellularly located by immuno-electromicroscopy. Inhibition of this transporter blocks parasite development in erythrocytes. In this study, PfAdT was expressed in C43 (DE3) Escherichia coli strain under isopropyl beta-d-thiogalacto-pyranoside (IPTG) induction to screen inhibitory molecules. PfAdT was integrated directly into the bacterial cytoplasmic membrane. Whereas IPTG-induced bacterial cells imported radioactively labelled ATP, non-induced cells did not. The transporter bound specifically ADP and ATP, but not AMP. IPTG-induced cells preloaded with labelled ATP exported ATP after exogenous addition of unlabelled ADP or ATP, indicating a counter exchange transport mechanism. Bongrekic acid and atractyloside, two well-known specific inhibitors of mitochondrial ADP/ATP transporter, were tested. This experimental model was evaluated using three Malagasy crude plants extracts which have shown antiplasmodial activity on in vitro parasite cultures.  相似文献   

20.
In this study, we identified the most deleterious nsSNP in RB1 gene through structural and functional properties of its protein (pRB) and investigated its binding affinity with E2F-2. Out of 956 SNPs, we investigated 12 nsSNPs in coding region in which three of them (SNPids rs3092895, rs3092903 and rs3092905) are commonly found to be damaged by I-Mutant 2.0, SIFT and PolyPhen programs. With this effort, we modeled the mutant pRB proteins based on these deleterious nsSNPs. From a comparison of total energy, stabilizing residues and RMSD of these three mutant proteins with native pRB protein, we identified that the major mutation is from Glutamic acid to Glycine at the residue position of 746 of pRB. Further, we compared the binding efficiency of both native and mutant pRB (E746G) with E2F-2. We found that mutant pRB has less binding affinity with E2F-2 as compared to native type. This is due to sixteen hydrogen bonding and two salt bridges that exist between native type and E2F-2, whereas mutant type makes only thirteen hydrogen bonds and one salt bridge with E2F-2. Based on our investigation, we propose that the SNP with an id rs3092905 could be the most deleterious nsSNP in RB1 gene causing retinoblastoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号