首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a phylogeographical survey of the Italian wall lizard, Podarcis sicula, DNA sequence variation along an 887-bp segment of the cytochrome b gene was examined in 96 specimens from 86 localities covering the distribution range of the species. In addition, parts of the 12S rRNA and 16S rRNA genes from 12 selected specimens as representatives of more divergent cytochrome b haploclades were sequenced (together about 950 bp). Six phylogeographical main groups were found, three representing samples of the nominate subspecies Podarcis sicula sicula and closely related subspecies and the other three comprising Podarcis sicula campestris as well as all subspecies described from northern and eastern Adriatic islands. In southern Italy a population group with morphological characters of P. s. sicula but with the mitochondrial DNA features of P. s. campestris was detected indicating a probably recent hybridization zone. The present distribution patterns were interpreted as the consequence of natural events like retreats to glacial refuges and postglacial area expansions, but also as the results of multiple introductions by man.  相似文献   

2.
We investigated the phylogeographical patterns of Lissotriton italcus, a newt endemic to the Italian peninsula, aiming to determine why hotspots of intraspecific diversity so ‘hot’. We found two main mitochindrial DNA lineages (net sequence divergence of 6.8% at two fragments of total length of 1897 bp): one restricted to part of the Calabrian peninsula (i.e the southernmost portion of the species range) and the other widespread throughout the rest of the species range. Both lineages, which had a parapatric distribution, showed evidence of further subdivisions, with an overall number of eight terminal haplogroups, most of whose times to the most recent common ancestors were estimated at the Late Pleistocene. Analysis of molecular variance suggested that partitioning populations according to the geographical distribution of these haplogroups can explain 97% of the observed genetic variation. These results suggest that L. italicus underwent repeated cycles of allopatric fragmentation throughout the Pleistocene, and that it likely survived the Late Pleistocene paleoenvironmental changes within eight separate refugia. Thus, the current hotspot of intraspecific diversity of L. italicus (within the Calabrian peninsula) has not been moulded by long‐term stability of large populations but rather by multiple events of allopatric fragmentation and divergence. When compared with the patterns recently identified in other species, these results suggest that the occurrence of phases of allopatric divergence (eventually followed by secondary admixture) could be a common, albeit probably underrated feature in the history of formation of hotspots of intraspecific diversity. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 42–55.  相似文献   

3.
Two monophyletic sister species of wall lizards inhabit the two main groups of Balearic Islands: Podarcis lilfordi from islets and small islands around Mallorca and Menorca and Podarcis pityusensis from Ibiza, Formentera and associated islets. Genetic diversity within the endangered P. lilfordi has been well characterized, but P. pityusensis has not been studied in depth. Here, 2430 bp of mtDNA and 15 microsatellite loci were analysed from Ppityusensis populations from across its natural range. Two main genetic groupings were identified, although geographical structuring differed slightly between the mtDNA and the nuclear loci. In general, individuals from islets/islands adjacent to the main island of Ibiza were genetically distinct from those from Formentera and the associated Freus islands for both mtDNA and the nuclear loci. However, most individuals from the island of Ibiza were grouped with neighbouring islets/islands for nuclear loci, but with Formentera and Freus islands for the mitochondrial locus. A time‐calibrated Bayesian tree was constructed for the principal mitochondrial lineages within the Balearics, using the multispecies coalescent model, and provided statistical support for divergence of the two main Ppityusensis lineages 0.111–0.295 Ma. This suggests a mid‐late Pleistocene intraspecific divergence, compared with an early Pleistocene divergence in P. lilfordi, and postdates some major increases in sea level between 0.4 and 0.6 Ma, which may have flooded Formentera. The program IMa2 provided a posterior divergence time of 0.089–0.221 Ma, which was similar to the multispecies coalescent tree estimate. More significantly, it indicated low but asymmetric effective gene copy migration rates, with higher migration from Formentera to Ibiza populations. Our findings suggest that much of the present‐day diversity may have originated from a late Pleistocene colonization of one island group from the other, followed by allopatric divergence of these populations. Subsequent gene flow between these insular groups seems likely to be explained by recent human introductions. Two evolutionary significant units can be defined for P. pityusensis but these units would need to exclude the populations that have been the subjects of recent admixture.  相似文献   

4.
Bearded vulture populations in the Western Palearctic have experienced a severe decline during the last two centuries that has led to the near extinction of the species in Europe. In this study we analyse the sequence variation at the mitochondrial control region throughout the species range to infer its recent evolutionary history and to evaluate the current genetic status of the species. This study became possible through the extensive use of museum specimens to study populations now extinct. Phylogenetic analysis revealed the existence of two divergent mitochondrial lineages, lineage A occurring mainly in Western European populations and lineage B in African, Eastern European and Central Asian populations. The relative frequencies of haplotypes belonging to each lineage in the different populations show a steep East-West clinal distribution with maximal mixture of the two lineages in the Alps and Greece populations. A genealogical signature for population growth was found for lineage B, but not for lineage A; futhermore the Clade B haplotypes in western populations and clade A haplo-types in eastern populations are recently derived, as revealed by their peripheral location in median-joining haplotype networks. This phylogeographical pattern suggests allopatric differentiation of the two lineages in separate Mediterranean and African or Asian glacial refugia, followed by range expansion from the latter leading to two secondary contact suture zones in Central Europe and North Africa. High levels of among-population differentiation were observed, although these were not correlated with geographical distance. Due to the marked genetic structure, extinction of Central European populations in the last century re-sulted in the loss of a major portion of the genetic diversity of the species. We also found direct evidence for the effect of drift altering the genetic composition of the remnant Pyrenean population after the demographic bottleneck of the last century. Our results argue for the management of the species as a single population, given the apparent ecological exchangeability of extant stocks, and support the ongoing reintroduction of mixed ancestry birds in the Alps and planned reintroductions in Southern Spain.  相似文献   

5.
Aim We study the population differentiation and phylogeography of the Temminck’s Stint (Calidris temminckii). Specifically, we seek signs of past and present population size changes and dispersal events and evaluate management and conservation unit status of the populations. We also study the possibility of introgression as the origin of two mitochondrial DNA (mtDNA) lineages found and estimate the divergence time of the lineages. Location Northern Eurasia. Methods We analysed 583 bp of mtDNA control region domains I and II and 11 microsatellite loci from 13 localities throughout the breeding range. In addition, we used mitochondrial cytochrome c oxidase subunit I (COI), a barcoding gene, to search for signs of introgression. Results More population differentiation was found from microsatellites than from mtDNA, although differentiation was weak in both markers. Signs of past population growth were observed, in addition to more recent decline in some areas. Both control region and COI sequences revealed two maternal lineages coexisting in Fennoscandia and in north‐west Siberia. No signs of introgression were detected. Lineage divergence time was estimated to have occurred during the glacial periods of Pleistocene. Main conclusions Slight differences in mtDNA and microsatellite differentiation and diversity may reflect different features – such as the mutation rate and effective population size – of the markers used, or female‐biased dispersal pattern and high male site‐fidelity of the species. The coexistence of the two mitochondrial lineages is most likely a consequence of post‐glacial mixing of two refugial Pleistocene populations. Based on genetic information alone, global conservation concerns are not imminent. However, fast decline of a marginal Bothnian Bay population and the smallness and remoteness of a Central Yakutian population warrant conservation actions.  相似文献   

6.
Abstract

Brassica rupestris Raf. is a chasmophyte species that includes two subspecies, both endemic to Central-Western Sicily (Italy). Inter-Simple Sequence Repeat (ISSR) markers were used to detect genetic diversity within and among eight populations representative of the species' distribution range. High levels of genetic diversity were revealed both at the population (PPB = 53.88%, H S = 0.212, Sh = 0.309) and at the species level (PPB = 96.55%, H T = 0.307, Sh = 0.464). The correlation between genetic and geographical distances was negative (Mantel test, r = ?0.06, P < 0.95). The two subspecies of B. rupestris, subsp. rupestris and subsp. hispida, showed remarkable genetic similarity and molecular data did not unequivocally support their distinctness. The pattern of genetic variation revealed by our study bears important consequences for conservation management: It is desirable to preserve B. rupestris populations in situ with a “dynamic” strategy, while, ex situ conservation programmes might be improved to safeguard maximum genetic diversity.  相似文献   

7.
8.
Darevskia praticola differs from the other species of the genus in having a large but disjunct distribution, covering the Balkan and the Caucasus regions. Furthermore, most Darevskia species occupy saxicolous habitats, whereas D. praticola inhabits meadows and forest environments. Here we determine the phylogeographic and phylogenetic relationships of Darevskia praticola sensu lato and evaluate the current, morphology-based taxonomy. We sequenced two mtDNA genes (Cyt-b and ND4) and two nuclear loci (MC1R and RELN) for samples collected across the species range. Because our sequences amplified with the Cyt-b primers appear to represent a nuclear pseudogene we excluded this marker from the final analysis. Our results support monophyly of D. praticola and show its division into three clades. The first divergence, dated to the Late Pliocene, is between the Balkans and the Caucasus. The Caucasus lineage is further subdivided in a western Greater Caucasus and a Transcaucasia clade, likely due to subsequent differentiation during the Pleistocene. Our findings do not support the current taxonomic arrangement within D. praticola. The main geographic divergence likely happened due to a vicariance event associated with Plio-Pleistocene climatic and vegetation oscillations.  相似文献   

9.
The paper attempts to describe Italian mammal diversity in an evolutionary context. With 122 species according latest researches, Italy holds the richest mammal assemblage among European countries. Specific taxa are often represented by clearly distinctive lineages and several of them appear restricted to the Italian peninsula. Poor knowledge of taxonomy and uncritical application of IUCN threat categories at the national level could produce a flawed set of conservation priorities, independently from the rigorous application of the proposed guidelines for national Red List assessments. Furthermore, classical conservation assessments and protective legislation only consider traditionally named taxa, often privileging insular taxa of artificial origin but neglecting most of the results of genetic and molecular studies on intraspecific variation. The aim of the present work is to outline the need to incorporate phylogenetic and biogeographic data in the assessment of conservation priorities among mammals in Italy, in order to maximise the national contribution to biodiversity conservation in Europe. To this end, distribution, threat status, intraspecific and supraspecific taxonomy of the native mammal fauna should be analysed in a global context. Phylogeographic patterns emerging from previous studies indicate the general inadequacy of continental European populations serving as sources for re-stocking or re-introductions operations in Italy and the other European peninsulas. Thus the importance of integrating international guidelines on reintroductions with a clear understanding of national biogeographical peculiarities is highlighted.  相似文献   

10.
A combination of allozyme and mitochondrial DNA markers were used to determine the contribution of recent and ancient causes of patterns of genetic variation within and among 46 populations of the endangered golden sun moth, Synemon plana. Allozyme analysis grouped the 46 populations into 5 major genetic clusters that corresponded closely with geographic location following a classic isolation-by-distance model. Phylogenetic analysis of 14 mtDNA haplotypes revealed two reciprocally monophyletic groups. One of these groups (containing 4 geographically distant populations) was clearly identified by allozyme analysis and represents a distinct evolutionary unit. The remaining 4 allozyme groups were not distinguishable by mtDNA analysis. The evidence suggests that the populations within these groups derived from a small founding population that underwent rapid demographic expansion in ancient times. This was followed by more recent population bottlenecks resulting from habitat fragmentation associated with the widespread introduction of agriculture into the region. The generally low levels of allozyme and nucleotide diversity within these populations support this hypothesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
13.
For most species in the Western Palaearctic region, southern Mediterranean peninsulas have been identified as major Quaternary refugia and hotspots of intraspecific diversity, and thus, as areas of particular relevance for the conservation of the evolutionary potential. We analysed the patterns of geographical variation among 26 populations of the Italian stream frog, using both nuclear (allozymes) and mitochondrial (partial cytochrome b sequences) markers. Phylogenetic, phylogeographical and population genetic analyses suggested that the species survived the last glacial–interglacial cycles in two distinct refugia, one restricted to the tip of the Calabrian peninsula, at the extreme south of the species' range, the other spanning from central Calabria to central Apennines and showing evidences for further population subdivision therein. Historical demographic tests suggested a significant population expansion from the latter, which most likely began around the last pleniglacial. This expansion would have led to the rapid colonization of the northern Apennines to the north, and to a secondary contact and population admixture with the population from the southern refugium in southern central Calabria. A comparison of the evolutionary history inferred for the Italian stream frog with the data emerging for other codistributed species suggests: (i) the generality of a multiple-refugia scenario for the Italian peninsula, (ii) the possible occurrence of at least one suture zone in southern Italy, and (iii) that for most species, this Pleistocene refugium is not only a hotspot, but also a melting pot of intraspecific genetic diversity. Finally, the conservation implications of these results are also briefly highlighted.  相似文献   

14.
The Purple Sandpiper (Calidris maritima) is a medium‐sized shorebird that breeds in the Arctic and winters along northern Atlantic coastlines. Migration routes and affiliations between breeding grounds and wintering grounds are incompletely understood. Some populations appear to be declining, and future management policies for this species will benefit from understanding their migration patterns. This study used two mitochondrial DNA markers and 10 microsatellite loci to analyze current population structure and historical demographic trends. Samples were obtained from breeding locations in Nunavut (Canada), Iceland, and Svalbard (Norway) and from wintering locations along the coast of Maine (USA), Nova Scotia, New Brunswick, and Newfoundland (Canada), and Scotland (UK). Mitochondrial haplotypes displayed low genetic diversity, and a shallow phylogeny indicating recent divergence. With the exception of the two Canadian breeding populations from Nunavut, there was significant genetic differentiation among samples from all breeding locations; however, none of the breeding populations was a monophyletic group. We also found differentiation between both Iceland and Svalbard breeding populations and North American wintering populations. This pattern of divergence is consistent with a previously proposed migratory pathway between Canadian breeding locations and wintering grounds in the United Kingdom, but argues against migration between breeding grounds in Iceland and Svalbard and wintering grounds in North America. Breeding birds from Svalbard also showed a genetic signature intermediate between Canadian breeders and Icelandic breeders. Our results extend current knowledge of Purple Sandpiper population genetic structure and present new information regarding migration routes to wintering grounds in North America.  相似文献   

15.
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.  相似文献   

16.
We assessed the spatial pattern of genetic structure of smooth hammerhead shark Sphyrna zygaena in 10 localities from the Northern Mexican Pacific. A total of 35 haplotypes were identified in 129 sequences of the mtDNA control region. The results showed slight but significant genetic structure among localities (ΦST = 0.044, P < 0.001). In addition, the localities with highest number of juveniles were genetically different (ΦST = 0.058, P < 0.024), which may be representative of nursery areas. The genetic differentiation pattern can be associated to female philopatry and preference for particular birthing sites. Finally, historical demography shows that S. zygaena populations present a recent demographic expansion that occurred during glacial events in the late Pleistocene to early Holocene.  相似文献   

17.
The Cantabrian capercaillie (Tetrao urogallus cantabricus) occupies the southwestern edge of the grouse family distribution range in Eurasia. It is endemic to the Cantabrian Mountains in northwestern Spain and is geographically isolated and separated from the neighboring population in the Pyrenees by a distance of 300 km. Over the last decades, the population has undergone a dramatic decline and is now threatened with extinction. This study presents the genetic analysis of the Cantabrian capercaillie population using non-invasive samples. We performed genotyping of 45 individuals using 20 microsatellites and a sex marker. The data highlight the need for using a large number of markers when considering fragmented small populations. Genetic diversity (HE = 0.50) and average number of alleles (3.40) in the population were low. The population is fragmented into 2 clusters (FST = 0.113) that fit with areas on both sides of the transportation ways that divide its range. Both clusters exhibited additional heterozygote deficits. Geographical distance was negatively correlated with genetic relatedness (r = −0.44, P ≤ 0.001). The data show a recent decline in effective population size that can be related to an ongoing process of population reduction and fragmentation. Conservation actions should focus on the protection of local demes by maintaining a dense network of suitable patches to maximize reproductive output and the number of potential dispersers to reconnect the 2 subpopulations. © 2012 The Wildlife Society.  相似文献   

18.
The Mariana crow (Corvus kubaryi) is an endangered species that is restricted to the islands of Guam and Rota in the Mariana archipelago. Predation by the introduced brown tree snake (Boiga irregularis) has decimated bird populations on Guam, and the crow population there is the last wild remnant of the endemic forest avifauna. The population on Guam is critically endangered and, despite intensive management, the population has continued to decline. Additional management options include intermixing the Guam and Rota populations, but such options are best evaluated within a population genetics framework. We used three types of molecular markers to assay genetic variation in the Mariana crow: mitochondrial DNA (mtDNA) sequences, minisatellites and microsatellites. The two populations could be differentiated by mtDNA sequencing and they differed in allele frequencies at nuclear markers. Thus, the populations could be designated as evolutionarily significant units. However, the Guam population is genetically more diverse than the Rota population, and its survival probability if managed separately is very low. All markers did indicate that the two populations are closely related and separated by a shallow genealogical division. Intermixing the populations is justified by two rationales. First, the apparent population differences may result from recent human activities. Second, a greater amount of genetic information may be preserved by joint management. The translocation of birds from Rota to Guam has begun, but strategies that will ensure maintenance of the variation in the Guam population warrant further exploration.  相似文献   

19.
The endemic Hawaiian grouper, Epinephelus quernus , is a commercially important species experiencing intense fishing pressure in part of its distributional range. We examined population genetic structure with 398 base pairs of the mitochondrial control region across a large portion of the range of E. quernus , spanning approximately 2000 km of the Hawaiian archipelago. Examination of genetic diversity shows that Gardner Island, situated midway along the island chain, harbours the most diverse haplotypes. F -statistics and Bayesian estimates of migration also reveal the mid-archipelago as genetically differentiated, where the first significant break among adjacent pairs of populations lies between the islands of Nihoa and Necker. Most island comparisons beyond Necker and Gardner to the north-west and among the lower five islands to the south-east show little to no genetic differences. Evidence of historical population expansion across the islands was also found by Maximum Likelihood analyses. The results suggest that management should be structured to reflect the genetic differentiation and diversity in the mid-archipelago, the patterns of which may be associated with oceanic current patterns.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 449–468.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号