首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our recent studies have shown that both cigarette smoke and UV-containing light, which are the most widespread and ubiquitous mutagens and carcinogens in the world, cause systemic genotoxic damage in hairless mice. Further studies were designed with the aim of evaluating the induction of genotoxic and carcinogenic effects in Swiss albino mice exposed to smoke and/or light since birth. We observed that a 4-month whole-body exposure of mice to mainstream cigarette smoke, starting at birth, caused an early and potent carcinogenic response in the lung and other organs. Our further experiments showed that exposure of mice to environmental cigarette smoke, during the first 5 weeks of life, resulted in a variety of significant alterations of intermediate biomarkers, including cytogenetic damage in bone marrow and peripheral blood, formation of lipid peroxidation products, increase of bulky DNA adduct levels, induction of oxidative DNA damage, and overexpression of OGG1 gene in lung, stimulation of apoptosis, hyperproliferation and loss of Fhit protein in pulmonary alveolar macrophages and/or bronchial epithelial cells, and early histopathological alterations in the respiratory tract. Moreover, exposure of mice to UV-containing light, mimicking solar irradiation, significantly enhanced oxidative DNA damage and bulky DNA adduct levels in lung, and synergized with smoke in inducing molecular alterations in the respiratory tract. The baseline OGG1 expression in lung was particularly high at birth and decreased in post-weanling mice. Oxidative DNA damage and other investigated end-points exhibited differential patterns in post-weanling mice and adult mice. The findings of these studies provide a mechanistic clue to the general concept that the neonatal period and early stages of life are critical in affecting susceptibility to carcinogens.  相似文献   

2.
3.
Cigarette smoking is a major independent risk factor for cardiovascular disease. While the association between chronic smoking and cardiovascular disease is well established, the underlying mechanisms are incompletely understood, partly due to the lack of adequate in vivo animal models. Here, we report a mouse model of chronic smoking-induced cardiovascular pathology. Male C57BL/6J mice were exposed to whole body mainstream cigarette smoke (CS) using a SCIREQ "InExpose" smoking system (48 min/day, 5 days/wk) for 16 or 32 wk. Age-matched, air-exposed mice served as nonsmoking controls. Blood pressure was measured, and cardiac MRI was performed. In vitro vascular ring and isolated heart experiments were performed to measure vascular reactivity and cardiac function. Blood from control and smoking mice was studied for the nitric oxide (NO) decay rate and reactive oxygen species (ROS) generation. With 32 wk of CS exposure, mice had significantly less body weight gain and markedly higher blood pressure. At 32 wk of CS exposure, ACh-induced vasorelaxation was significantly shifted to the right and downward, left ventricular mass was significantly larger along with an increased heart-to-body weight ratio, in vitro cardiac function tended to be impaired with high afterload, white blood cells had significantly higher ROS generation, and the blood NO decay rate was significantly faster. Thus, smoking led to blunted weight gain, hypertension, endothelial dysfunction, leukocyte activation with ROS generation, decreased NO bioavailability, and mild cardiac hypertrophy in mice that were not otherwise predisposed to disease. This mouse model is a useful tool to enable further elucidation of the molecular and cellular mechanisms of smoking-induced cardiovascular diseases.  相似文献   

4.
Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.  相似文献   

5.
Increasing evidence supports the role of genetic and epigenetic alterations in a wide variety of human diseases, including cancer. Assessment of these alterations is hence essential for estimating the hazardous effects of human exposure to medications. Panobinostat received US Food and Drug Administration’s approval in 2015 for treatment of certain tumors and its usefulness as part of a strategy to treat other diseases, such as human immunodeficiency virus infection, is currently investigated. Nevertheless, no data on in vivo genotoxical and epigenotoxical effects of panobinostat are available. The aim of the current study was to assess the genotoxical and epigenotoxical properties of panobinostat in murine bone marrow cells. Molecular mechanisms underlying these alterations were also evaluated. We show that mice treated with panobinostat doses recommended for human developed numerical chromosomal abnormalities, structural chromosomal damage, oxidative DNA damage, and DNA hypomethylation. These effects were dose-dependent. Further, panobinostat altered the expression of 23 genes implicated in DNA damage, as determined by RT² Profiler polymerase chain reaction (PCR) array, and confirmed by quantitative real-time PCR and western blotting. Collectively, these findings indicate that panobinostat exposure induces aneugenicity, clastogenicity, oxidative DNA damage, DNA hypomethylation, and down-regulation of repair gene expression, which may be responsible for panobinostat-induced genotoxical and epigenotoxical effects. Considering the potential toxicity of panobinostat, the medicinal use of panobinostat must be weighed against the risk of tumorigenesis and the demonstrated toxicity profile of panobinostat may support further development of chemotherapeutic treatments with reduced toxicity. Diminishing the metabolic liabilities associated with panobinostat exposure, and simultaneous use of panobinostat with DNA repair enhancers, are examples of strategies for drug design to reduce panobinostat carcinogenicity.  相似文献   

6.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to study how a certain set of proteins recognizes DNA lesions in contest of a large excess of intact DNA. The review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. The main models of primary damage recognition and preincision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in light of the available data.  相似文献   

7.
Gupta RC  Arif JM  Gairola CG 《Mutation research》1999,424(1-2):195-205
Exposure to tobacco smoke has been implicated in the increased incidence of cancer and cardiovascular diseases. This report describes various experimental studies in animals that were carried out to determine the ability of cigarette smoke to form DNA adducts and to define chromatographic nature of the major adducts. Tissues from rodents exposed to mainstream or sidestream cigarette smoke in nose-only and whole-body exposure systems, respectively, for different durations were analyzed for DNA adducts by 32P-postlabeling assay. The results showed essentially similar qualitative patterns in various respiratory (lung, trachea, larynx) and non-respiratory (heart, bladder) tissues of smoke-exposed rats. However, adduct pattern in the nasal mucosa was different. The mean total DNA adducts in various tissues expressed as per 1010 nucleotides exhibited the following order: heart (700)>lung (420)>trachea (170)>larynx (150)>bladder (50). Some qualitatively identical adducts were routinely detected in tissues from sham-treated rats but at greatly reduced levels (5- to 25-fold). The levels of lung DNA adducts increased with the duration of exposure up to 23 weeks and returned to control levels 19 weeks after the cessation of exposure. Species-related differences in adduct magnitude and patterns were observed among rats, mice and guinea pigs; mouse being the most sensitive to DNA damage and guinea pig the least sensitive. Whole-body exposure of rats to sidestream cigarette smoke also enhanced the pre-existing DNA adducts by several fold in different tissues. Selective chromatography, and extractability in butanol suggested lipophilic nature of smoke-associated DNA adducts, which were, however, recovered significantly better in nuclease P1 than butanol enrichment procedure. The major smoke-associated adducts were chromatographically different from any of the reference adducts of polycyclic aromatic hydrocarbons (PAHs) co-chromatographed with the smoke DNA samples. Because PAH-DNA adducts are recovered with equal efficiency by the two enrichment procedures, the above observations suggested that smoke-associated adducts are not related to typical PAHs, like benzo[a]pyrene. It is concluded that cigarette smoke increased the levels of pre-existing endogenous DNA adducts (the so-called I-compounds) in animal models and that these adducts are unrelated to those formed by typical PAHs.  相似文献   

8.
Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21CDKN1A (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence.  相似文献   

9.
Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631mg/m(3) of total particulate matter. Exposure started within 12h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were measured by (32)P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.  相似文献   

10.
Cigarette smoke is a major risk factor for human diseases, such as lung cancer and atherosclerosis. The present study was undertaken to investigate the effect of non-fractionated water-soluble cigarette smoke extract (NFWS CSE) on DNA damage and cellular adhesion molecule expression in human umbilical vein endothelial cells (HUVECs). DNA damage and the surface expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin were determined by the use of the comet assay and flow cytometry, respectively. NFWS CSE-induced DNA damage in a dose-dependent manner during a 2 h exposure. Pretreatment with ascorbic acid or -tocopherol completely inhibited the NFWS CSE-induced DNA damage. NFWS CSE exposure also up-regulated the surface expression of ICAM-1 and E-selectin in HUVECs. Pretreatment with ascorbic acid or -tocopherol had no effect on NFWS CSE-induced E-selectin and ICAM-1 expression. In contrast, the non-antioxidant metal chelator 1,10-phenanthroline partially suppressed the surface expression of ICAM-1 and E-selectin. These results suggest that NFWS CSE exposure induces both DNA damage and the surface expression of adhesion molecules in HUVECs. However, the molecular mechanism of these effects may be through different pathways: reactive oxygen species are involved in NFWS CSE-induced DNA damage but have little relation to NFWS CSE-induced E-selectin and ICAM-1 expression.  相似文献   

11.
Environmental tobacco smoke (ETS) exposure and alcohol (EtOH) consumption often occur together, yet their combined effects on cardiovascular disease development are currently unclear. A shared feature between ETS and EtOH exposure is that both increase oxidative stress and dysfunction within mitochondria. The hypothesis of this study was that simultaneous EtOH and ETS exposure will significantly increase atherogenesis and mitochondrial damage compared to the individual effects of either factor (ETS or EtOH). To test this hypothesis, apoE(-/-) mice were exposed to EtOH and/or ETS singly or in combination for 4 weeks and compared to filtered air, nonalcohol controls. Atherosclerotic lesion formation (oil red O staining of whole aortas), mitochondrial DNA (mtDNA) damage, and oxidant stress were assessed in vascular tissues. Combined exposure to ETS and EtOH had the greatest impact on atherogenesis, mtDNA damage, and oxidant stress compared to filtered air controls, alcohol, or ETS-exposed animals alone. Because moderate EtOH consumption is commonly thought to be cardioprotective, these studies suggest that the potential influence of common cardiovascular disease risk factors, such as tobacco smoke exposure or hypercholesterolemia, on the cardiovascular effects of alcohol should be considered.  相似文献   

12.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.  相似文献   

13.

Background

Cardiovascular disease (CVD) remains one of the major killers in modern society. One strong risk factor of CVD is cigarette smoking that causes myocardial injury and leads to the genesis of pathological cardiovascular events. However, the exact toxic component(s) of cigarette smoke (CS) and its molecular and cellular mechanisms for causing myocardial injury leading to heart damage and its prevention are largely unknown.

Methodology/Principal Findings

Using a guinea pig model, here we show that chronic exposure to CS produces myocardial injury that is prevented by vitamin C. Male guinea pigs were fed either vitamin C-deficient (0.5 mg/day) or vitamin C-sufficient (15 mg/day) diet and subjected to CS exposure from 5 Kentucky Research cigarettes (3R4F)/day (6 days/week) in a smoke chamber up to 8 weeks. Pair-fed sham controls were subjected to air exposure instead of CS exposure under similar conditions. Myocardial injury was produced in CS-exposed marginal vitamin C-deficient guinea pigs as evidenced by release of cardiac Troponin-T and I in the serum, oxidative stress, inflammation, apoptosis, thrombosis and collagen deposition in the myocardium. Treatment of rat cardiomyocyte cells (H9c2) in vitro and guinea pigs in vivo with p-benzoquinone (p-BQ) in amounts derived from CS revealed that p-BQ was a major factor responsible for CS-induced myocardial damage. A moderately large dose of vitamin C (15 mg/day) prevented CS/p-BQ-induced myocardial injury. Population based studies indicated that plasma vitamin C levels of smokers without disease were significantly lower (p = 0,0000) than that of non-smokers. Vitamin C levels of CS-related cardiovascular patients were further lower (p = 0.0000) than that of smokers without disease.

Conclusions/Significance

The results indicate that dietary supplementation of vitamin C may be a novel and simple therapy for the prevention of pathological cardiovascular events in habitual smokers.  相似文献   

14.
Phytoplankton such as Euglena are constantly exposed to solar light which is used for photosynthesis. Although the solar ultraviolet (UV) induces DNA damage such as cyclobutane-pyrimidine dimers (CPDs), many kinds of living organisms can repair CPDs by photoreactivation (PR) utilizing the near-UV/blue light component in sunlight. Euglena cells are known to possess such PR activity. In the present paper, the formation of CPDs induced by UV-C exposure and the photoreactivation PR repair of these CPDs by UV-A are demonstrated. To clarify the adaptive responses prior UV-B irradiation on PR activity, cells were cultured in the dark or under UV-B light. When the cells were cultured in the dark for 3 d prior to UV-C exposure, PR activity decreased. When the cells were cultured under UV-B light, however, PR activity increased. These results suggest that exposing the cells to UV-B prior to exposure to UV-C induced an adaptive response towards DNA damage caused by UV-C exposure, and this UV-C induced damage was repaired through PR activity.  相似文献   

15.
Despite increased social awareness, marketing restraints, tobacco taxation, and available smoking cessation rehab programs, active and passive smoking remain a worldwide challenging epidemic and a key risk factor for cardiovascular diseases development. Although cardiovascular (CV) protection is more pronounced in women than in men due to estrogenic effects, tobacco cigarette smoking exposure seems to alter this protection by modulating estrogen actions via undefined mechanisms. Premenopausal cigarette smoking women are at higher risk of adverse CV effects than non-smokers. In this study, we investigated the impact of cigarette smoking on early CV injury after myocardial infarction (MI) in non-menopausal female mice. Aortic arch calcification, fibrosis, reactive oxygen species, and gene expression of inflammatory and calcification genes were exaggerated in mice exposed to cigarette smoke (CS). These findings suggest that aortic injury following MI, characterized by vascular smooth muscle cells transdifferentiation, calcification, inflammation, and collagen deposition but not cardiac dysfunction is exacerbated with CS exposure. The novel findings of this study highlight the importance of aortic injury on short and long-term prognosis in CS-exposed MI females. Linking those findings to estrogen alteration is probable and entails investigation.  相似文献   

16.
BACKROUND: Radiation therapy treatment of breast cancer, Hodgkin's disease or childhood cancers expose the heart to high local radiation doses, causing an increased risk of cardiovascular disease in the survivors decades after the treatment. The mechanisms that underlie the radiation damage remain poorly understood so far. Previous data show that impairment of mitochondrial oxidative metabolism is directly linked to the development of cardiovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the radiation-induced in vivo effects on cardiac mitochondrial proteome and function were investigated. C57BL/6N mice were exposed to local irradiation of the heart with doses of 0.2 Gy or 2 Gy (X-ray, 200 kV) at the age of eight weeks, the control mice were sham-irradiated. After four weeks the cardiac mitochondria were isolated and tested for proteomic and functional alterations. Two complementary proteomics approaches using both peptide and protein quantification strategies showed radiation-induced deregulation of 25 proteins in total. Three main biological categories were affected: the oxidative phophorylation, the pyruvate metabolism, and the cytoskeletal structure. The mitochondria exposed to high-dose irradiation showed functional impairment reflected as partial deactivation of Complex I (32%) and Complex III (11%), decreased succinate-driven respiratory capacity (13%), increased level of reactive oxygen species and enhanced oxidation of mitochondrial proteins. The changes in the pyruvate metabolism and structural proteins were seen with both low and high radiation doses. CONCLUSION/SIGNIFICANCE: This is the first study showing the biological alterations in the murine heart mitochondria several weeks after the exposure to low- and high-dose of ionizing radiation. Our results show that doses, equivalent to a single dose in radiotherapy, cause long-lasting changes in mitochondrial oxidative metabolism and mitochondria-associated cytoskeleton. This prompts us to propose that these first pathological changes lead to an increased risk of cardiovascular disease after radiation exposure.  相似文献   

17.
18.

Background  

In response to DNA damage or structural alterations of chromatin, histone H2AX may be phosphorylated on Ser139 by phosphoinositide 3-kinase related protein kinases (PIKKs) such as ataxia telangiectasia mutated (ATM), ATM-and Rad-3 related (ATR) kinase, or by DNA dependent protein kinase (DNA-PKcs). When DNA damage primarily involves formation of DNA double-strand breaks (DSBs), H2AX is preferentially phosphorylated by ATM rather than by the other PIKKs. We have recently reported that brief exposure of human pulmonary adenocarcinoma A549 cells or normal human bronchial epithelial cells (NHBE) to cigarette smoke (CS) induced phosphorylation of H2AX.  相似文献   

19.
The aim of this study is to evaluate whether the alterations in glucose metabolism and insulin resistance are mechanisms presented in cardiac remodelling induced by the toxicity of cigarette smoke. Male Wistar rats were assigned to the control group (C; n = 12) and the cigarette smoke-exposed group (exposed to cigarette smoke over 2 months) (CS; n = 12). Transthoracic echocardiography, blood pressure assessment, serum biochemical analyses for catecholamines and cotinine, energy metabolism enzymes activities assay; HOMA index (homeostatic model assessment); immunohistochemistry; and Western blot for proteins involved in energy metabolism were performed. The CS group presented concentric hypertrophy, systolic and diastolic dysfunction, and higher oxidative stress. It was observed changes in energy metabolism, characterized by a higher HOMA index, lower concentration of GLUT4 (glucose transporter 4) and lower 3-hydroxyl-CoA dehydrogenase activity, suggesting the presence of insulin resistance. Yet, the cardiac glycogen was depleted, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) increased, with normal pyruvate dehydrogenase (PDH) activity. The activity of citrate synthase, mitochondrial complexes and ATP synthase (adenosine triphosphate synthase) decreased and the expression of Sirtuin 1 (SIRT1) increased. In conclusion, exposure to cigarette smoke induces cardiac remodelling and dysfunction. The mitochondrial dysfunction and heart damage induced by cigarette smoke exposure are associated with insulin resistance and glucose metabolism changes.  相似文献   

20.
Nucleotide excision repair (NER) is the most versatile and best studied DNA repair system in humans. NER can repair a variety of bulky DNA damages including UV-light induced DNA photoproducts. NER consists of a multistep process in which the DNA lesion is recognized and demarcated by DNA unwinding. Then, a ~28 bp DNA damage containing oligonucleotide is excised followed by gap filling using the undamaged DNA strand as a template. The consequences of defective NER are demonstrated by three rare autosomal-rezessive NER-defective syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). XP patients show severe sun sensitivity, freckling in sun exposed skin, and develop skin cancers already during childhood. CS patients exhibit sun sensitivity, severe neurologic abnormalities, and cachectic dwarfism. Clinical symptoms of TTD patients include sun sensitivity, freckling in sun exposed skin areas, and brittle sulfur-deficient hair. In contrast to XP patients, CS and TTD patients are not skin cancer prone. Studying these syndromes can increase the knowledge of skin cancer development including cutaneous melanoma as well as basal and squamous cell carcinoma in general that may lead to new preventional and therapeutic anticancer strategies in the normal population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号