首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The details of a new fixation procedure using 40 per cent osmium tetroxide in carbon tetrachloride are presented. This fixative is a good general preservative, gives a higher contrast than the ordinary osmium fixatives, and may also preserve structures that are not otherwise readily revealed. Some possible reasons for the increased contrast are discussed. Micrographs of the sea urchin spermatozoa treated with the new fixative provide more detailed information on the tail structure than has heretofore been obtainable. This information is summarized in the diagrammatic text-figure. The sperm tail can no longer be regarded as having a bilateral symmetry, and thus, it is possible to assign an index number to each of the nine peripheral filaments. The nine peripheral filaments have a complex morphology, each one of them seems to be composed of two subunits that have unequal diameters. The slightly larger subunits are all found in the clockwise direction with regard to the other subunit or are all found in the counter-clockwise direction in the sectioned tail. Each of the slightly larger subunits is at intervals provided with two types of projections-referred to as the arms and the spokes-that extend in respective tangential and radial direction. The arms from one filament may be in actual contact with its neighboring filament through a complex bridge-like formation. There is a quantitative difference between the nine filaments with regard to this bridge. It is assumed that the eleven tail filaments follow straight paths. Some hypotheses on sperm movement are discussed based on this assumption and on the fact that the oscillations of an actively working sperm tail are in one plane. Probably, the nine peripheral filaments have non-equivalent functions in tail movement. In the centriole the nine peripheral filaments characteristically appear as triplets in a whorl-like arrangement. It is suggested that the inner part of this triplet is a derivation of the arms. A structural abnormality of the tail is described that is characterized by two or three complete sets of tail filaments within one cell membrane.  相似文献   

2.
The epididymides of rat testis were fixed in glutaraldehyde and cut as frozen sections. The sections were incubated in lead nitrate solution containing as a substrate either ATP, AMP, creatinine phosphate, beta glycerophosphate, or phenyl phosphate. Then they were postfixed in osmium tetroxide, embedded, sectioned, and examined with the electron microscope. In the sperm tail, when ATP is used as a substrate the reaction product (lead phosphate) is observed both in the tail filament complex and on the surface membrane of the mitochondrial helix of the middle piece. In the tail filament complex, this product is seen near the nine paired peripheral and two central filaments, and in the matrix between the outer coarse fibers. But the product is not observed within these filaments and fibers. In longitudinal sections, no periodicity of the deposits in the complex is observed. When the other phosphate compounds are used as substrates the reaction products appear on the surface membrane of the mitochondrial helix, and are not found in the tail filament complex. No distinctly different localization of the reaction products is observed when substrates other than ATP are used. Possible relationships between the structure and the function of the sperm tail are discussed in the light of these findings.  相似文献   

3.
THE FINE STRUCTURE OF THE CILIA FROM CTENOPHORE SWIMMING-PLATES   总被引:1,自引:10,他引:1       下载免费PDF全文
The ctenophore swimming-plate has been examined with the electron microscope. It has been recognized as an association of long cilia in tight hexagonal packing. One of the directions of the hexagonal packing is parallel to the long edge of the swimming-plate and is perpendicular to the direction of the ciliary beat. All the cilia in the swimming-plate are identically oriented. The effective beat in the movement of the swimming-plate is directed towards the aboral pole of the animal, and this is also the side of the unpaired peripheral filament in all the cilia. The direction of the ciliary beat is fixed in relation to the position of the filaments of the cilia. The swimming-plate cilium differs from other types of cilia and flagella in having a filament arrangement that can be described as 9 + 3 as opposed to the conventional 9 + 2 pattern. The central filaments appear in a group of two "tubular" filaments and an associated compact filament. The compact filament might have a supporting function. It has been called "midfilament." Two of the peripheral nine filaments (Fig. 1, Nos. 3 and 8) are joined to the ciliary membrane by means of slender lamellae, which divide the cilium into two unequal compartments. These lamellae have been called "compartmenting lamellae." Some observations of the arrangement of the compartmenting lamelae indicate that they function by cementing the cilia together in lateral rows. The cilia of the rows meet at a short distance from each other, leaving a gap of 30 A only. The meeting points are close to the termini of the compartmenting ridges. An electron-dense substance is sometimes seen bridging the gap. Some irregularities are noted with regard to the arrangement of the compartmenting lamellae particularly at the peripheral rows of cilia. In many cilia in these rows there are small vesicles beneath the ciliary membrane.  相似文献   

4.
Rat testes were confined to the abdominal cavity by operation. After 1 to 26 days they were excised, fixed with osmium tetroxide, sectioned, and examined with the electron microscope. Changes in the axial filament complex of the spermatid flagellum appeared 2 days after operation, and the arrangement of filaments in the middle- and main pieces of some spermatid tails was disordered as compared to the 9 + 2 filament arrangement in the tails of the control spermatids and in other flagella and cilia. In cross-sections, the filaments in the experimental material were nine or less in number, and each of them was single and dense. Occasionally some were double, and in those instances one filament was dense and the other was light and tubular. The central filaments were obscure. In longitudinal sections,the filaments were not parallel to the main axis of the flagella or to each other. It was assumed that the central filaments were more sensitive to the experimental conditions than the peripheral pairs of filaments. Furthermore, the light filaments of the peripheral pairs were more sensitive than the dense filaments. Besides the axial filament complex, the fibrous sheath which surrounds it in the main piece was also changed. The plasma membrane of the changed flagella disappeared or became fragmented.  相似文献   

5.
FINE STRUCTURE OF SCIARA COPROPHILA SPERM   总被引:6,自引:4,他引:2       下载免费PDF全文
Though the fagellum of Sciara sperm arises from a blepharoplast and is characterized by doublet tubules with arms, it differs markedly from the familiar type of flagella in the number and arrangement of its tubules. The axial filament complex in sperm from the testis of Sciara consists of approximately 70 doublet tubules, each with an associated singlet tubule. Near the nucleus these tubules are displaced in an oval array. Posteriorly the oval breaks and coils from one free end so that the axial filament complex at posterior levels has the form of a spiral. The singlet tubules do not extend the full length of the sperm but terminate in order from inside the spiral. Farther posteriorly the axial filament complex reverses the direction of coiling, and the doublets terminate from outside the spiral. Four arms are specifically positioned on the singlet and doublet tubules. A single mitochondrial derivative extends most of the length of the sperm; it consists of a large mass of proteinacious material, a crystalloid located adjacent to the axial filament complex, and peripheral cristae. In the female genital tract, sperm undergo gross morphological changes which include sloughing of practically all the mitochondrial material except the crystalloid, repositioning of the crystalloid, and uncoiling and subsequent recoiling of the axial filament complex into a different configuration. From analysis of serial sections it was determined that the orientation of arms, when the axial filament is viewed from base to tip, is the same as in conventional flagella.  相似文献   

6.
Electron micrographs of frozen-hydrated preparations of flagellar filaments of Salmonella typhimurium were used to obtain a three-dimensional reconstruction of the structure. The filaments were obtained from the mutant SJW1660, which produces straight, left-handed filaments. The subunits in this filament are thought to be all in the L-state. The structure consists of a set of 11 longitudinal segmented rods of density that lie at a radius of 70 A. The outermost feature of the filament is a set of knobs of density that project outward from the rods. The interior of the filaments consists of arms that extend inward radially from the segmented rods. The 11 segmented rods and their interconnections are noteworthy because current theories regarding filament structure involve switching of subunits between the L and R states co-operatively along the directions of the rods.  相似文献   

7.
OTO method for preservation of actin filaments in electron microscopy   总被引:2,自引:0,他引:2  
Osmium tetroxide, commonly used as a fixative in electron microscopy, can destroy actin filaments. Thiocarbohydrizide (TCH) is a bipolar substance that binds to the osmium. By sandwiching TCH between two phases of osmium treatment, tissue exposure to osmium could be minimized without destroying actin filaments. The contrast of osmophilic components of cells was also enhanced.  相似文献   

8.
The structure of the peripheral domains of neurofilaments (NFs) was revealed by rotary shadowing electron microscopy. NFs were isolated from bovine spinal cords by Sepharose CL-4B gel filtration and examined by low angle rotary shadowing. The peripheral domains appeared as thin, flexible, filamentous structures projecting from the intermediate filament core, with a constant density along their entire length. The average length of the projections was approximately 85 nm and the width about 4 nm. These projections appeared from regularly distributed sites, at 22 nm spacing, which seemed to correspond to the typical repeat of the alpha-helix-rich rod domain of the core filament. The density of the projections was found to be 4.1 (+/- 0.6) per 22 nm. We performed reconstitution experiments using purified NF polypeptides to confirm that the projection was indeed the NF peripheral domain. Individual components of the NF triplet, i.e. NF-L, NF-M and NF-H, were purified by DE-52 and Mono-Q anion exchange chromatographies in the presence of 6 M-urea and were assembled in various combinations into filaments. Reassembled filaments were somewhat more slender than the isolated NFs and exhibited a distinct 22 nm axial periodicity. While prominent projections were not observed in the filaments assembled from NF-L alone, reconstructed filaments containing NF-L plus either NF-M or NF-H revealed many projections. The average length of the projections in the filaments reconstructed from NF-L and NF-H was about 63 nm. The projections of reconstructed filaments from NF-L and NF-M were about 55 nm in length. The difference in the lengths of the projections might reflect the difference in the length of the carboxy-terminal tail domain between NF-M and NF-H. The results are interpreted to show that the carboxy-terminal tail domains of NFs project in a regular pattern from the core filament, which is consistent with a half-staggered organization of the tetrameric subunits.  相似文献   

9.
NUCLEAR CHANGES DURING SPERMIOGENESIS IN A PULMONATE SNAIL   总被引:4,自引:4,他引:0       下载免费PDF全文
Changes in both external form and internal arrangement of nuclear material have been investigated in the differentiation of the sperm of the pulmonate snail, Otala lactea. Sperm head differentiation begins with a flattening of the previously spherical nucleus and a thickening of the nuclear envelope covering the anterior and posterior surfaces of that nucleus. Tail filaments can be seen in the cytoplasm at this time. At a slightly later period the mitochondria begin to form the tail filament sheath and at this time the nucleus begins to elongate in a direction parallel to the future axis of the sperm. At the same time the nuclear material begins to orient itself at right angles to the nuclear surface which lines the pit occupied by the centriole. As nuclear elongation proceeds, this orientation of nuclear substance takes on the appearance of 60 A thick sheets bent in a direction parallel to the sperm axis. Soon the sheets fill the entire nucleus. The nucleus then begins to twist along its axis so that it starts to take on the mature, flame-shaped form. At this time the flat sheets begin to disappear and in the mature sperm head they are no longer visible (see Text-fig. 2 B).  相似文献   

10.
THE ULTRASTRUCTURE OF THE Z DISC IN SKELETAL MUSCLE   总被引:30,自引:30,他引:0       下载免费PDF全文
This electron microscopic study deals with the structure of the Z disc of frog's skeletal muscle, with special regard to the I filaments—whether they pass through the Z disc or terminate at it. In most longitudinal sections the I filaments terminate as rod-like projections on either side of the Z disc, one I filament on one side lying between two I filaments on the opposite side. This indicates that the I filaments are not continuous through the Z disc. The rod-like projections are often seen to consist of filaments (denoted as Z filaments) which meet at an angle. In cross-sections through the Z region the I filaments and Z filaments form tetragonal patterns. The I filaments are situated in the corners of the squares; the oblique Z filaments form the sides of squares. The tetragonal pattern formed by the Z filaments is rotated 45 degrees with respect to the tetragons formed by the I filaments on both sides of Z. This structural arrangement is interpreted to indicate that each I filament on one side of the Z disc faces the center of the space between four I filaments on the opposite side of Z and that the interconnection is formed by four Z filaments.  相似文献   

11.
Actin filaments, assembled from highly purified actin from either skeletal muscle or Dictyostelium amoebae, are very stable under physiological ionic conditions. A small and limited amount of exchange of actin filament subunits for unpolymerized actin or subunits in other filaments has been measured by three techniques: fluorescence energy transfer, incorporation of 35S-labelled actin monomers into unlabelled actin filaments, and exchange of [14C]ATP with filament-bound ADP. A 40 kDa protein purified from amoebae destabilizes these otherwise stable filaments in a Ca2+-dependent manner. Myosin purified from Dictyostelium amoebae is phosphorylated both in the tail region of the heavy chain and in one of the light chains. Phosphorylation appears to regulate myosin thick-filament formation.  相似文献   

12.
Spermatozoa from representatives of the five insect orders in superorder Neuropteroidea were examined by electron microscopy following a new fixation method that includes tannic acid in the primary fixative but has uranyl acetate rather than osmium tetroxide as the secondary fixative. The sperm axoneme was found to be similar in the four orders Megaloptera, Raphidioptera, Neuroptera, and Coleoptera, and is characterized above all by its so-called intertubular material being divided into two portions, one located outside, but in contact with the doublet, and the other projecting from the accessory tubule and having a beak-like shape. These features have not been seen in insects from other orders and may be a synapomorphy for these neuropteroid orders. The accessory tubules in these four orders have 16 protofilaments. The shape of the accessory bodies adjacent to the mitochondrial derivatives is nearly the same in insects from the more primitive neuropteroid orders and in Coleoptera. The sperm tail of the examined strepsipteran deviates in several respects from that of other neuropteroids: the particle row in the wall of accessory tubules is incomplete, an intertubular material is missing, and the mitochondria contain no crystal. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The flagellum of the thysanopteran spermatozoon has been examined by electron microscopy and computer-aided image analysis. The flagellum consists of 27 microtubular elements that probably are formed as outgrowths from three separate basal bodies. Nine of the elements are normal microtubular doublets that carry dynein arms and nine are doublets without dynein arms. The remaining nine elements are microtubular singlets that apparently bear dynein arms and have the same appearance as A-subtubules of microtubular doublets. The 27 elements are arranged in a fixed pattern that consists of nine groups, each of which begins with a microtubular singlet and ends with an arm-less microtubular doublet. Computer-aided image analysis has shown that the A-subtubules of the doublets and the microtubular singlets have lumens with very similar patterns. The sperm tail is known to have some motility; it generates fast waves running along its length. The amalgamated axonemes hence act as a functional flagellum. The thysanopteran sperm tail is the only type of flagellum known to us that consists of microtubules in a highly asymmetric array.  相似文献   

14.
In nematode sperm cell motility, major sperm protein (MSP) filament assembly results in dynamic membrane protrusions in a manner that closely resembles actin-based motility in other eukaryotic cells. Paradoxically, whereas actin-based motility is driven by addition of ATP-bound actin subunits onto actin filament plus-ends located at the cell membrane, MSP dimers assemble from solution into nonpolar filaments that lack a nucleotide binding site. Thus, filament polarity and on-filament ATP hydrolysis, although essential for actin-based motility, appear to be unnecessary for membrane protrusions by MSP. As a potential resolution to this paradox, we propose a model for MSP filament assembly and force generation by MSP filament end-tracking proteins. In this model, ATP hydrolysis drives affinity-modulated, processive interactions between membrane-associated proteins and elongating filament ends. However, in contrast to the "actoclampin" model for actin filament end-tracking motors, ATP activates the tracking protein (or a soluble cofactor) rather than the MSP subunits themselves (in contrast to activation of actin subunits by ATP binding). The MSP end-tracking model predicts properties that are consistent with several key observations of MSP-based motility, including persistent membrane attachment, polymerization of filament ends at the membrane with depolymerization of free-filament ends away from the membrane, as well as a saturating dependence of polymerization rate on the concentration of non-MSP soluble cytoplasmic components.  相似文献   

15.
Sperm motility is a must for natural fertilization to occur. During their travel through the epididymis, mammalian spermatozoa gradually acquire the ability to move. This is accomplished through a sliding movement of the outer doublet microtubules of the axoneme which is energized by the dynein ATPase. Within its complex structure, the mammalian sperm flagellum contains F-actin and thus, we decided to test in the guinea pig sperm flagellum the role of F-actin in motility. During maturation, capacitation, and the acrosome reaction, a gradual decrease of the relative concentration of F-actin was observed. Motility increased as spermatozoa became able to fertilize. Gelsolin, phalloidin, and KI inhibited sperm motility. Gelsolin canceled sperm motility within 20 min of treatment while 0.6 M KI had immediate effects. Phalloidin diminished hyperactive sperm motility slightly. All three compounds significantly increased the relative concentration of F-actin. Latrunculins are conventional drugs that destabilize the F-actin cytoskeleton. Latrunculin A (LAT A) did not affect sperm motility; but significantly increased F-actin relative concentration. The results suggested that in guinea pig spermatozoa, randomly severing F-actin filaments inhibits flagellar motility; while end filament alteration does not. Thus, specific filament regions seem to be important for sperm motility.  相似文献   

16.
《The Journal of cell biology》1993,123(6):1517-1533
Neurofilaments, assembled from NF-L, NF-M, and NF-H subunits, are the most abundant structural elements in myelinated axons. Although all three subunits contain a central, alpha-helical rod domain thought to mediate filament assembly, only NF-L self-assembles into 10-nm filaments in vitro. To explore the roles of the central rod, the NH2- terminal head and the COOH-terminal tail domain in filament assembly, full-length, headless, tailless, and rod only fragments of mouse NF-L were expressed in bacteria, purified, and their structure and assembly properties examined by conventional and scanning transmission electron microscopy (TEM and STEM). These experiments revealed that in vitro assembly of NF-L into bona fide 10-nm filaments requires both end domains: whereas the NH2-terminal head domain promotes lateral association of protofilaments into protofibrils and ultimately 10-nm filaments, the COOH-terminal tail domain controls lateral assembly of protofilaments so that it terminates at the 10-nm filament level. Hence, the two end domains of NF-L have antagonistic effects on the lateral association of protofilaments into higher-order structures, with the effect of the COOH-terminal tail domain being dominant over that of the NH2-terminal head domain. Consideration of the 21-nm axial beading commonly observed with 10-nm filaments, the approximate 21-nm axial periodicity measured on paracrystals, and recent cross-linking data combine to support a molecular model for intermediate filament architecture in which the 44-46-nm long dimer rods overlap by 1-3-nm head-to-tail, whereas laterally they align antiparallel both unstaggered and approximately half-staggered.  相似文献   

17.
We studied two aspects of vimentin intermediate filament dynamics—transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly transported along linear tracks in both anterograde and retrograde directions. Filament transport was microtubule dependent but independent of microtubule polymerization and/or an interaction with the plus end–binding protein APC. We also studied subunit exchange in filaments by long-term imaging after photoconversion. We found that converted vimentin remained in small clusters along the length of filaments rather than redistributing uniformly throughout the network, even in cells that divided after photoconversion. These data show that vimentin filaments do not depolymerize into individual subunits; they recompose by severing and reannealing. Together these results show that vimentin filaments are very dynamic and that their transport is required for network maintenance.  相似文献   

18.
We have developed thick filament isolation methods that preserve the relaxed cross-bridge order of frog thick filaments such that the filaments can be analyzed by the convergent techniques of electron microscopy, optical diffraction, and computer image analysis. Images of the filaments shadowed by using either unidirectional shadowing or rotary shadowing show a series of subunits arranged along a series of right-handed near-helical strands that occur every 43 nm axially along the filament arms. Optical filtrations of images of these shadowed filaments show 4-5 subunits per half-turn of the strands, consistent with a three-stranded arrangement of the cross-bridges, thus supporting our earlier results from negative staining and computer-image analysis. The optical diffraction patterns of the shadowed filaments show a departure from the pattern expected for helical symmetry consistent with the presence of cylindrical symmetry and a departure of the cross-bridges from helical symmetry. We also describe a modified negative staining procedure that gives improved delineation of the cross-bridge arrangement. From analysis of micrographs of these negatively stained filament tilted about their long axes, we have computed a preliminary three-dimensional reconstruction of the filament that clearly confirms the three-stranded arrangement of the myosin heads.  相似文献   

19.
The fine structure of the spermatozoon of Pennaria tiarella (coelenterata)   总被引:2,自引:0,他引:2  
Spermatozoa of the hydroid Pennaria tiarella were examined with the electron microscope. The anterior region is characterized by the presence of 30–40 membrane-bounded vesicles which lie anterior to the nucleus. These vesicles are apparently derived from the Golgi apparatus. The nucleus is conical in shape with a protrusion at the anterior end. Posteriorly it is indented by four radially arranged mitochondria. Lying within the fossa formed by the mitochondria are proximal and distal (filament forming) centrioles. The distal centriole is characterized by nine centriole satellite projections which emanate from its matrix. The tubules of the distal centriole are continuous with the alpha filaments of the tail. The tails are typical 9 + 2 flagella with 9 peripheral doublet (or alpha) filaments surrounding two central (or beta) filaments.  相似文献   

20.
I reported previously (Higashi-Fujime, S., 1982, Cold Spring Harbor Symp. Quant. Biol., 46:69-75) that active movements of fibrils composed of F-actin and myosin filaments occurred after superprecipitation in the presence of ATP at low ionic strengths. When the concentration of MgCl2 in the medium used in the above experiment was raised to 20-26 mM, bundles of F-actin filaments, in addition to large precipitates, were formed spontaneously both during and after superprecipitation. Along these bundles, many myosin filaments were observed to slide unidirectionally and successively through the bundle, from one end to the other. The sliding of myosin filaments continued for approximately 1 h at room temperature at a mean rate of 6.0 micron/s, as long as ATP remained in the medium. By electron microscopy, it was found that most F-actin filaments decorated with heavy meromyosin pointed to the same direction in the bundle. Myosin filaments moved actively not only along the F-actin bundle but also in the medium. Such movement probably occurred along F-actin filaments that did not form the bundle but were dispersed in the medium, although dispersed F-actin filaments were not visible under the microscope. In this case, myosin filament could have moved in a reverse direction, changing from one F-actin filament to the other. These results suggested that the direction of movement of myosin filament, which has a bipolar structure and the potentiality to move in both directions, was determined by the polarity of F-actin filament in action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号