首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
银杏内酯对胚基底前脑NOS、AChE阳性神经元发育的影响   总被引:7,自引:0,他引:7  
目的 探讨银杏内酯对胚基底前脑NOS和AChE阳性神经元发育的影响。方法 实验分成银杏组,NGF组,BDNF组和单纯对照组。取孕17dSD大鼠胚基底前脑原基制成细胞悬液接种于96孔培养板和2块24孔培养板中,分别加入含银杏内酯,NGF,BDNF及不含上述成份的DMEM培养液,于体外培养18d后,96孔培养板行MTT比色分析测定光吸收值(OD值),以检测培养的神经元活力,2块24孔培养板分别行NADPH-d和AChE组化染色,显微镜下计数各组每了忆中的NOS和AChE阳性神经元数,并用CMM-301图像分析系统对两种神经元的细胞面积和细胞周长进行处理。数据用方差分析和SNK检验进行统计学处理。结果 银杏组MTT比色分析的OD值和NOS,AChE阳性神经元数,细胞面积,细胞周长等指标均明显地好于单纯对照组,达到或仅稍差于NGF组或BDNF组的指标。结论 银杏内酯在促进胚基底前脑NOS和AChE阳性神经元发育方面具有类似NGF和BDNF的作用。  相似文献   

2.
用酶组织化学和免疫组织化学双标技术,观察了正常SD大鼠基底前脑内侧隔核(MS)、斜角带垂直支(VDB)和水平支(HDB)中NOS阳性神经元的形态和分布及NOS与胆碱能神经元标志物ChAT、NGF受体(NGF-R)和AChE之间的共存关系。结果发现,MS、VDB和HDB的头端NOS阳性神经元较多、胞体较大、突起多,尾端NOS阳性神经元数目较少、胞体较小、突起少而短。NOS+ChAT双标神经元占NOS阳性神经元总数的90%,占ChAT阳性神经元总数的39%;NOS+NGF-R双标神经元占NOS阳性神经元总数的83%,占NGF-R阳性神经元总数的40%;NOS+AChE双标神经元占NOS阳性神经元总数的96%,占AChE阳性神经元总数的39%。这些结果为研究Alzheimer'sdisease病理过程中基底前脑隔区胆碱能神经元退变与NO的关系提供了形态学依据。  相似文献   

3.
Nerve growth factor (NGF) acts through the receptor tyrosine kinase trkA to serve as a trophic factor for cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band. We have previously shown that the neuronal isoform of nitric oxide synthase (NOS) is selectively expressed in a large fraction of trkA-expressing cholinergic neurons in these brain regions in the adult rat, and that NGF induces the expression of neuronal-NOS in these cells. Herein, we show that: 1) neuronal-NOS is also localized to these neurons in the developing septum; 2) the expression of neuronal-NOS is regulated in the developing medial septal nucleus and vertical limb of the diagonal band; 3) neuronal-NOS regulation parallels that for other markers of basal forebrain cholinergic neuron differentiation, such as cholineacetyltransferase; and 4) NGF infusion in the postnatal period induces robust increases in neuronal-NOS mRNA and in NOS activity in the basal forebrain. Taken together with earlier findings, our results suggest that neuronal-NOS has a role in the differentiation and mature function of septal cholinergic neurons. Through enhancing neuronal-NOS synthesis, endogenous NGF is likely to regulate NO functions in vivo. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

4.
大鼠肠道内NOS与AChE、VIP阳性神经元的分布关系研究   总被引:11,自引:0,他引:11  
应用一氧化氮合酶 (NOS)、乙酰胆碱酯酶 (ACh E)组织化学及血管活性肠肽 (VIP)免疫组织化学方法 ,光镜下比较观察大鼠肠道内 NOS、ACh E、VIP阳性神经元的形态学特征。结果显示 ,肠肌间丛 NOS阳性神经元胞体大小不等 ,形态不一 ,NOS、ACh E和 VIP阳性神经元的分布密度为 ACh E>NOS>VIP,在不同的肠段和层次分布密度有差异 ,NOS与 ACh E存在共染。在肌间丛和粘膜下丛 ,少数 VIP与 NOS共染。在粘膜下丛 ,三种阳性神经元的分布密度为 ACh E>VIP>NOS。在肌间丛和粘膜下丛 ,可见 VIP阳性末梢环抱 NOS阳性神经元胞体 ,两者呈终扣样接触。上述结果提示 NOS阳性神经元与 ACh E、 VIP阳性神经元有密切的形态学联系。在消化道功能调节上 ,它们可能起协调作用。  相似文献   

5.
本文用一氧化氮合酶和乙酰胆碱酯酶双重显示法,对大鼠回肠肌间神经丛进行了组织化学观察,结果发现三种不同染色的神经元:(1)乙酰胆碱酯酶阳性神经元(占82%);(2)一氧化氮合酶阳性神经元(占16%);(3)一氧化氮合酶和乙酰胆碱酯酶阳性神经元(占2%)。以上结果提示,一氧化氮可以与乙酰胆碱共存于大鼠回肠肌间神经丛的少数神经元内。本文还对肠肌间神经丛内神经元的类型和一氧化氮的作用进行了讨论。  相似文献   

6.
In sections of rat forebrain, perikarya labeled radioautographically with125I-NGF resembled cholinesterase-positive neurons in their distribution within striatum and basal forebrain. Neurons with NGF receptors were also visualized in radioautographs prepared from the basal forebrain of a cerebrus monkey. Present techniques fail to detect axons projecting from basal forebrain to hippocampus or cortex which have been shown to take up NGF selectively in retrograde transport studies. In studies with membrane-enriched preparations from rat, high-affinity binding of125I-NGF (half maximal saturation in the 15–30 pM range) was detected in basal forebrain and striatum; lower levels of high-affinity binding were seen in hippocampus and neocortex. The binding and molecular properties of these receptors are similar to those described in other NGF-responsive tissues. These observations are further evidence supporting a biological role for NGF on some forebrain cholinergic neurons in adult rat.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

7.
目的观察扬子鳄中脑视叶一氧化氮合酶(nitric oxide synthase,NOS)和乙酰胆碱酯酶(acetylcholinesterase,AChE)阳性神经元的形态和分布,为扬子鳄脑的比较解剖学积累资料,为其机能研究提供形态学依据。方法采用还原型尼克酰胺腺嘌呤二核苷酸黄递酶(NADPH-d)法和亚铁氰化酮法观察扬子鳄中脑视叶NOS和AChE阳性神经元的分布和特征,并作统计学处理。结果扬子鳄中脑视叶有NOS和AChE阳性神经元分布,为大、中、小型细胞,以中、小型细胞为主,胞体呈椭圆形、三角形、圆形和梭形。结论扬子鳄中脑视叶有NOS和AChE阳性神经元分布。  相似文献   

8.
本实验分别应用还原型尼克酰胺嘌呤二核苷酸脱氢酶(NADPH-d)和乙酰胆碱酯酶(AChE)方法,对扬子鳄颈髓NOS和AChE阳性神经元的分布进行了研究。结果表明:颈髓前角、中央灰质均含有NOS和AChE阳性神经元,颈髓后角有较为丰富的NOS和AChE阳性纤维和终末以及显色淡的NOS阳性神经元。  相似文献   

9.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

10.
The secretion and cellular localization of the molecular forms of acetylcholinesterase (AChE) were studied in primary cultures of rat sympathetic neurons. When cultured under conditions favoring a noradrenergic phenotype, these neurons synthesized and secreted large quantities of the tetrameric G4, and the dodecameric A12 forms, and minor amounts of the G1 and G2 forms. When these neurons adopted the cholinergic phenotype, i.e., in the presence of muscle-conditioned medium, the development of the cellular A12 form was completely inhibited. These neurons secreted only globular, mainly G4, AChE. Both cellular and secreted A12 AChE in adrenergic cultures aggregated at an ionic strength similar to that of the culture medium, raising the hypothesis that this form was associated with a polyanionic component of basal lamina. In noradrenergic neurons, 60-80% of the catalytic sites were exposed at the cell surface. In particular, 80% of G4 form, but only 60% of the A12 form, was external, demonstrating for the A12 form a sizeable intracellular pool. The hydrophobic character of the molecular forms was studied in relation to their cellular localization. As in muscle cells, most of the G4 form was membrane-bound. Whereas 76% of the cell surface A12 form was solubilized in the aqueous phase by high salt concentrations, only 50% of the intracellular A12 form was solubilized under these conditions. The rest of intracellular A12 could be solubilized by detergents and was thus either membrane-bound or entrapped in vesicles originating from, e.g., the Golgi apparatus.  相似文献   

11.
目的 观察扬子鳄新皮质内一氧化氮合酶(nitric oxide synthase,NOS)和乙酰胆碱酯酶(acetylcholinesterase,AChE)阳性神经元的形态和分布,为扬子鳄脑的比较解剖学积累资料,为其机能研究提供形态学依据.方法 采用还原型尼克酰胺腺嘌呤二核苷酸黄递酶(NADPH-d)法和亚铁氰化酮法观察扬子鳄新皮质内NOS和AChE阳性神经元的分布和特征.结果 扬子鳄新皮质内有NOS和AChE阳性神经元分布,为大、中、小型细胞,以中小型细胞为主,胞体呈圆形、椭圆形、三角形和梭形.结论 扬子鳄新皮质内有NOS和AChE阳性神经元分布.  相似文献   

12.
Nitric oxide (NO) is known to be a freely diffusible gaseous neurotransmitter that is not requiring synaptic connection to exert its effects. Nitric oxide synthase (NOS), the enzyme responsible for NO synthesis can be visualised by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. Other neurotransmitter is a classical neurotransmitter acetylcholine (ACh), regulated by enzyme acetylcholinesterase (AChE) that hydrolyses the acetylcholine after its releasing. This work is presenting results of histochemical study of the NADPH-d and AChE expression (nitrergic and cholinergic neurons) in the spinal cord (SC) during various periods in its development. Specimens from Wistar rat pups in the age ranging from 1st to 21st postnatal days (P1-P21) have been compared with those of adult rats (P90). Transverse sections of the SC were evaluated by light microscope. In adults, the NADPH-d positivity was detectable in the neurons of superficial and deep layers of the dorsal horn, pericentral area and in the area of preganglionic autonomic nuclei. AChE positive structures were seen in the same locations as previous ones with the exception of two locations: in superficial layers of the dorsal horn AChE staining was absent, while in the ventral horn the groups of AChE positive motoneurons were found. At the perinatal period both NADPH-d and AChE positive neurons were stained from slight to moderate intensity only. During later developmental periods the staining gradually increased and achieved adult level of intensity on the day P21. Our results confirmed the presence of nitrergic and cholinergic neurons in investigated areas of the SC and indicated their fully functioning of NADPH-d and AChE positive structures in SC from the third postnatal week.  相似文献   

13.
A modified method for improved preservation and optical resolution of acetylcholinesterase (AChE)-containing structures in adult rat brain is described. Optimal tissue preparation included fixation in paraformaldehyde 4%, glutaraldehyde 0.1%, and sucrose 7% in 0.1 M Sorensen's phosphate buffer, pH 7.4, rinsing in buffer 50 mM with respect to NLL, Q and 2% with respect to sucrose, acetone dehydration, vacuum infiltration widi LKB Historesin, and polymerization at 4 C, overnight incubation of 10 μm sections at 37 C in the AChE histochemical reaction mixture and silver intensification according to Hedreen et al. Demonstration of AChE enzyme activity in the cholinergic projection from the rat basal forebrain to the ipsilateral hippocampus exemplifies the usefulness of the technique. The method provides an excellent demonstration of AChE-positive axonal processes and enables the pharmacohis-tochemical visualization of cholinergic neurons. This procedure offers a convenient method for analysis of cholinergic neurons that avoids potential artifacts inherent in other AChE histochemical procedures.  相似文献   

14.
The early stages of Alzheimer's disease are characterized by cholinergic deficits and the preservation of cholinergic function through the use of acetylcholinesterase inhibitors is the basis for current treatments of the disease. Understanding the causes for the loss of basal forebrain cholinergic neurons in neurodegeneration is therefore a key to developing new therapeutics. In this study, we review novel aspects of cholinesterase membrane localization in brain and propose mechanisms for its lipid domain targeting, secretion and protein-protein interactions. In erythrocytes, acetylcholinesterase (AChE) is localized to lipid rafts through a GPI anchor. However, the main splice form of AChE in brain lacks a transmembrane peptide anchor region and is bound to the 'proline-rich membrane anchor', PRiMA, in lipid rafts. Furthermore, AChE is secreted ('shed') from membranes and this shedding is stimulated by cholinergic agonists. Immunocytochemical studies on rat brain have shown that membrane-associated PRiMA immunofluorescence is located selectively at cholinergic neurons of the basal forebrain and striatum. A strong association of AChE with the membrane via PRiMA seems therefore to be a specific requirement of forebrain cholinergic neurons. α7 nicotinic acetylcholine receptors are also associated with lipid rafts where they undergo rapid internalisation on stimulation. We are currently probing the mechanism(s) of AChE shedding, and whether this process and its apparent association with α7 nicotinic acetylcholine receptors and metabolism of the Alzheimer's amyloid precursor protein is determined by its association with lipid raft domains either in normal or pathological situations.  相似文献   

15.
Down's syndrome (DS) individuals develop neuropathological features similar to Alzheimer's disease (AD), including degeneration of cholinergic basal forebrain (CBF) neurons. In AD a reduction in CBF/trkA-containing neurons has been suggested to trigger a hyperexpression of galaninergic fibers within the nucleus basalis subfield of the basal forebrain. The present study examined the interrelationship between reductions in CBF/trkA-containing neurons and the overexpression of galaninergic fibers within the nucleus basalis in DS. Within the nucleus basalis stereologic evaluation revealed a 46% reduction in the number of trkA-immunopositive neurons, whereas optical density measurements displayed a nonsignificant 18% reduction in neuronal trkA immunoreactivity in DS as compared with age-matched controls. Western blot analysis also showed a significant reduction in cortical trkA protein levels in DS. A semiquantitative examination of galaninergic fibers in the nucleus basalis revealed only a modest hypertrophy of galaninergic fibers within the nucleus basalis in DS. The present findings indicate a significant reduction in trkA within the nucleus basalis and cortex with only a moderate hypertrophy of galaninergic fibers in DS. These observations suggest that DS may not be an exact genetic model for investigation of changes in the AD basal forebrain.  相似文献   

16.
To study early events in the central nervous system (CNS) cholinergic development, cells from rat basal forebrain tissue were placed in culture at an age when neurogenesis in vivo is still active [embryonic day (E) 15]. The rapid mortality of these cells in defined medium, with 50% mortality after 5-10 h, was blocked completely by soluble proteins from the olfactory bulb (a basal forebrain target), extending earlier observations (Lambert, Megerian, Garden, and Klein, 1988). Treated cultures were capable of incorporating thymidine into DNA, and most cells incorporating 3H-thymidine (greater than 90%) also stained positive for neurofilament, confirming neuronal proliferation in the supplemented cultures. A small percentage of 3H-thymidine labelled cells were glial fibrillary acidic protein (GFAP) positive, but growth factors that support astroglial proliferation [epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor (IGF-1)] were not sufficient for neuronal support. After 5 culture days with supplemented medium, almost 50% of the cells showed choline acetyltransferase (ChAT) immunofluorescence. The cholinergic neurons typically formed clusters separate from noncholinergic cells. These mature cultures did not develop if young cultures were treated with aphidicolin to block DNA synthesis. The data show that cultures of very young rat basal forebrain cells can be neurogenic, giving rise to abundant cholinergic neurons, and that early cell proliferation is essential for long-term culture survival.  相似文献   

17.
用还原型尼克项胺腺嘌呤二核苷磷酸黄递酶反应,结合乙酸胆碱酯酶组织化学技术,观察了SD大鼠背根神经节,发现背根神经节内存在有四种不同显色的神经元。(1)AChE阳性神经元(8%)。(2)NADPH-d阳性神经元(2%)。(3)NADPH-d与AChE双显色神经元(90%)。(4)少数两种酶反应均为阴性神经元。其中双显色神经元胞质内含有蓝色和棕色两种颗粒。这证明背根节内存在许多NADPH-d与AChE共存的神经元。提示了背根节内NADPH-d与AChE双染神经元可能与痛感知的传递有关。  相似文献   

18.
1. A high oxygen atmosphere induced apoptosis in cultured neuronal cells including PC12 cells and rat embryonic cortical, hippocampal, and basal forebrain neurons associated with DNA fragmentation and nuclear condensation.2. The sensitivity of CNS neurons to a high-oxygen atmosphere was the following order; cortex > basal forebrain > hippocampus.3. Cycloheximide and actinomycin-D inhibited the apoptosis, indicating that it depends on new macromolecular synthesis. In contrast, cultured postnatal CNS neurons were resistant to oxidative stress.4. Neurotrophic factors such as nerve growth factor (NGF), fibroblast growth factor (FGF), and epidermal growth factor (EGF) blocked the apoptosis induced by a high-oxygen atmosphere.  相似文献   

19.
Summary By employing biochemical assay and histochemical enzyme techniques the effect of preganglionic sympathectomy on the cholinesterase (ChE) activity in the superior cervical ganglia of rats and hamsters was investigated. Biochemical assays indicate that the ChE activity in the superior cervical ganglia of adult rats and hamsters is 57.19 and 28.63 respectively (expressed in u moles acetylcholine hydrolyzed per min per g of tissue); two weeks after preganglionic denervation, about 50% and 60% of ChE activity are lost respectively. Histochemical enzyme examination reveals that in the rat superior cervical ganglion, the majority of the neurons are adrenergic with weak to moderate acetylcholinesterase (AChE) reaction and the minority of the neurons are cholinergic with strong AChE activity, while only one type of adrenergic neurons exhibits a weak AChE activity in the hamster superior cervical ganglion. The AChE activity is localized in the perinuclear area, in the cisternae of the rough surfaced endoplasmic reticulum, in the Golgi complex and on the plasma membrane of the hamster's neurons; it is mainly localized in the cisternae of the rough surfaced endoplasmic reticulum of the rat's neurons. AChE reaction product is also detected on the axolemmal membranes of the preganglionic nerve fibers in the sympathetic ganglia of rats and hamsters.After preganglionic sympathectomy, the AChE activity in the adrenergic neurons and in the preganglionic unmyelinated nerve fibers is markedly reduced, whereas the cholinergic neurons and preganglionic myelinated nerve fibers remain unchanged. On the basis of these results two conclusions have been reached: (1) The fact that strong AChE activity localized in the cholinergic neurons and preganglionic myelinated fibers is not influenced by denervation, suggests that these structures are able to produce AChE. (2) The reduction of AChE activity in the rat and hamster superior cervical ganglia two weeks after preganglionic denervation, observed by histochemical examination, can be correlated with a concomitant measurable reduction determined by biochemical assays.Supported in part by a grant from the National Science Council, Republic of China. The author wishes to express his gratitude to the Department of Pharmacology, College of Medicine, National Taiwan University, for the use of its equipment for biochemical assays  相似文献   

20.
A modified method for improved preservation and optical resolution of acetylcholinesterase (AChE)-containing structures in adult rat brain is described. Optimal tissue preparation included fixation in paraformaldehyde 4%, glutaraldehyde 0.1%, and sucrose 7% in 0.1M Sorensen's phosphate buffer, pH 7.4, rinsing in buffer 50 mM with respect to NH4Cl and 2% with respect to sucrose, acetone dehydration, vacuum infiltration with LKB Historesin, and polymerization at 4 C, overnight incubation of 10 microns sections at 37 C in the AChE histochemical reaction mixture and silver intensification according to Hedreen et al. Demonstration of AChE enzyme activity in the cholinergic projection from the rat basal forebrain to the ipsilateral hippocampus exemplifies the usefulness of the technique. The method provides an excellent demonstration of AChE-positive axonal processes and enables the pharmacohistochemical visualization of cholinergic neurons. This procedure offers a convenient method for analysis of cholinergic neurons that avoids potential artifacts inherent in other AChE histochemical procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号