共查询到20条相似文献,搜索用时 15 毫秒
1.
Li‐Jun Tang 《Journal of cellular and molecular medicine》2014,18(1):1-14
Liver stem/progenitor cells (LSPCs) are able to duplicate themselves and differentiate into each type of cells in the liver, including mature hepatocytes and cholangiocytes. Understanding how to accurately control the hepatic differentiation of LSPCs is a challenge in many fields from preclinical to clinical treatments. This review summarizes the recent advances made to control the hepatic differentiation of LSPCs over the last few decades. The hepatic differentiation of LSPCs is a gradual process consisting of three main steps: initiation, progression and accomplishment. The unbalanced distribution of the affecting materials in each step results in the hepatic maturation of LSPCs. As the innovative and creative works for generating hepatocytes with full functions from LSPCs are gradually accumulated, LSPC therapies will soon be a new choice for treating liver diseases. 相似文献
2.
To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications, this study sought
to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants. Molecular expression analysis confirmed neural stem
cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined
genes related to stem cell niches and glial fate decision. Under the influence of neurotrophic factors, bFGF and NGF, the
neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways.
This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia, which could
directly induce the differentiation toward neurons, or SCs. 相似文献
3.
Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes 总被引:8,自引:0,他引:8
The emergence of hepatocyte based clinical and pharmaceutical technologies, has been limited by the absence of a stable hepatocyte cell source. Embryonic stem cells may represent a potential solution to this cell source limitation problem since they are highly proliferative, renewable, and pluripotent. Although many investigators have described techniques to effectively differentiate stem cells into a variety of mature cell lineages, their practicality is limited by: (1) low yields of fully differentiated cells, (2) absence of large scale processing considerations, and (3) ineffective downstream enrichment protocols. Thus, a differentiation platform that may be modified to induce and sustain differentiated cell function and scaled to increase differentiated cell yield would improve current stem cell differentiation strategies. Microencapsulation provides a vehicle for the discrete control of key cell culture parameters such as the diffusion of growth factors, metabolites, and wastes. In addition, both cell seeding density and bead composition may be manipulated. In order to assess the feasibility of directing stem cell differentiation via microenvironment regulation, we have developed a murine embryonic stem cell (ES) alginate poly-l-lysine microencapsulation hepatocyte differentiation system. Our results indicate that the alginate microenvironment maintains cell viability, is conducive to ES cell differentiation, and maintains differentiated cellular function. This system may ultimately assist in developing scalable stem cell differentiation strategies. 相似文献
4.
Liver stem/progenitor cells play a key role in liver development and maybe also in liver cancer development. In our previous study a population of c-Kit-(CD45/TER119)- liver stem/progenitor cells in mouse fetal liver, was successfully sorted with large amount (10(6)-10(7)) by using immuno-magnetic microbeads. In this study, the sorted liver stem/progenitor cells were used for proteomic study. Proteins of the sorted liver stem/progenitor cells and unsorted fetal liver cells were investigated using two-dimensional electrophoresis. A two-dimensional proteome map of liver stem/progenitor cells was obtained for the first time. Proteins that exhibited significantly upregulation in liver stem/progenitor cells were identified by peptide mass fingerprinting and peptide sequencing. Nineteen protein spots corresponding to 12 different proteins were identified as showing significant upregulation in liver stem/progenitor cells and seem to play important roles in such cells in cell metabolism, cell cycle regulation, and stress. An interesting finding is that most of the upregulated proteins were overexpressed in various cancers (11 of 12, including 6 in human hepatocellular carcinoma (HCC)) and involved in cancer development as reported in previous studies. Some of the identified proteins were validated by real-time PCR, Western blotting, and immunostaining. Taken together, the data presented provide a significant new protein-level insight into the biology of liver stem/progenitor cells, a key population of cells that might be also involved in liver cancer development. 相似文献
5.
The study of the differentiation potential of multipotent stromal progenitor cells (PC) in embryogenesis is a crucial issue for understanding their biology and role in the tissue regeneration of an adult organism. In this study, in monolayer culture, osteogenic and adipogenic potencies of fibroblast-like PCs derived from human fetal liver of 8–11 gestation weeks were investigated before and after exposure to cryoprotectant dimethyl sulphoxide (DMSO). It was shown that the primary suspension of human fetal liver cells includes immature stromal fibroblast-like PCs, which were able to induce osteogenic and adipogenic differentiation. The short-term exposure of recently isolated human fetal liver cells to cryoprotectant DMSO led to alterations in the properties of fibroblast-like PCs. Under subculture conditions, an increase in the number of fibroblast-like PCs capable of inducing osteogenic differentiation in vitro was discovered. It is necessary to take this established fact of DMSO influence on the differentiation capacity of fetal fibroblast-like PCs into consideration when developing cryopreservation methods for stem cells. 相似文献
6.
Jianxing Zeng Yingying Jing Rongyu Shi Xiaorong Pan Fobao Lai Wenting Liu 《Cell cycle (Georgetown, Tex.)》2016,15(12):1602-1610
Autophagy plays important roles in self-renewal and differentiation of stem cells. Hepatic progenitor cells (HPCs) are thought to have the ability of self-renewal as well as possess a bipotential capacity, which allows them to differentiate into both hepatocytes and bile ductular cells. However, how autophagy contributes to self-renewal and differentiation of hepatic progenitor cells is not well understood. In this study, we use a well-established rat hepatic progenitor cell lines called WB-F344, which is treated with 3.75 mM sodium butyrate (SB) to promote the differentiation of WB-F344 along the biliary phenotype. We found that autophagy was decreased in the early stage of biliary differentiation, and maintained a low level at the late stage. Activation of autophagy by rapamycin or starvation suppressed the biliary differentiation of WB-F344. Further study reported that autophagy inhibited Notch1 signaling pathway, which contributed to biliary differentiation and morphogenesis. In conclusions, autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. 相似文献
7.
8.
9.
Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells 下载免费PDF全文
Jeannine Hoepfner Mandy Kleinsorge Oliver Papp Mania Ackermann Susanne Alfken Ursula Rinas Wladimir Solodenko Andreas Kirschning Malte Sgodda Tobias Cantz 《Cell biology international》2016,40(5):534-548
10.
11.
胚胎干细胞向造血干/祖细胞定向诱导分化的研究进展 总被引:1,自引:0,他引:1
胚胎干细胞(embryonic stem cell,ES细胞)是指由胚胎内细胞团(inner cell mass,ICM)细胞经体外抑制培养而筛选得到的细胞,具有无限增殖潜能,在体外可以向造血细胞分化,有可能为造血干细胞移植和血细胞输注开辟新的来源.此外,ES细胞向造血干/祖细胞的定向诱导分化也为阐明哺乳动物造血发育的细胞和分子机制提供了良好的体外模型.对ES细胞向造血干/祖细胞定向分化的研究进展进行了综述. 相似文献
12.
13.
Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling 总被引:6,自引:0,他引:6
Shindo K Kawashima N Sakamoto K Yamaguchi A Umezawa A Takagi M Katsube K Suda H 《Experimental cell research》2003,290(2):370-380
Notch receptor plays a crucial role in proliferation and differentiation of many cell types. To elucidate the function of Notch signaling in osteogenesis, we transfected the constitutively active Notch1 (Notch intracellular domain, NICD) into two different osteoblastic mesenchymal cell lines, KusaA and KusaO, and examined the changes of their osteogenic potentials. In NICD stable transformants (KusaA(NICD) and KusaO(NICD)), osteogenic properties including alkaline phosphatase activity, expression of osteocalcin and type I collagen, and in vitro calcification were suppressed. Transient transfection of NICD attenuated the promoter activities of Cbfa1 and Ose2 element. KusaA was capable of forming trabecular bone-like tissues when injected into mouse abdomen, but this in vivo bone forming activity was significantly suppressed in KusaA(NICD). Osteoclasts were induced in the KusaA-derived bone-like tissues, but lacked in the KusaA(NICD)-derived tissues. These results suggest that Notch signaling suppresses the osteoblastic differentiation of mesenchymal progenitor cells. 相似文献
14.
Meng Ren Li Yan Chang‐Zhen Shang Jun Cao Li‐Hong Lu Jun Min Hua Cheng 《Journal of cellular biochemistry》2010,109(1):236-244
Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C‐peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver‐associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell‐replacement therapies. J. Cell. Biochem. 109: 236–244, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
15.
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues. 相似文献
16.
《Organogenesis》2013,9(2):208-215
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues. 相似文献
17.
The effects of mesenchymal stem cells (MSCs) on proliferation and cell fate determination of neural stem cells (NSCs) have been investigated. NSCs were co-cultured with MSCs or NIH3T3 cells using an in vitro transwell system. After 4 days, immunofluorescence staining showed that the number of cells positive for the cell proliferation antigen, ki-67, in neurospheres in MSCs was greater than in NIH3T3 cells. In some experiments, the top-layers of MSCs and NIH3T3 cells were removed to induce NSCs differentiation. Seven days after initiating differentiation, the levels of the neuronal marker, NSE, were higher in NSCs in MSCs co-culture group, and those of glial fibrillary acidic protein (GFAP) were lower, compared with NIH3T3 cells co-culture group. These were confirmed by immunofluorescence. The role of the Notch signaling pathway analyzed with the specific inhibitor, DAPT, and by examining the expression of Notch-related genes using RT-PCR showed that after co-culturing with MSCs for 24 h, NSCs expressed much higher levels of ki-67, Notch1, and Hes1 than did NSCs co-cultured with NIH3T3 cells. Treatment with DAPT decreased ki-67, Notch1 and Hes1 expression in NCSs, and increased Mash1 expression. The data indicate that the interactions between MSCs and NSCs promote NSCs proliferation and are involved in specifying neuronal fate, mediated in part by Notch signaling. 相似文献
18.
Moore RN Dasgupta A Rajaei N Yarmush ML Toner M Larue L Moghe PV 《Biotechnology and bioengineering》2008,101(6):1332-1343
We examined the effects of co-cultivated hepatocytes on the hepatospecific differentiation of murine embryonic stem (ES) cells. Utilizing an established mouse ES cell line expressing high or low levels of E-cadherin, that we have previously shown to be responsive to hepatotrophic growth factor stimulation (Dasgupta et al., 2005. Biotechnol Bioeng 92(3):257-266), we compared co-cultures of cadherin-expressing ES (CE-ES) cells with cultured rat hepatocytes, allowing for either paracrine interactions (indirect co-cultures) or both juxtacrine and paracrine interactions (direct co-cultures, random and patterned). Hepatospecific differentiation of ES cells was evaluated in terms of hepatic-like cuboidal morphology, heightened gene expression of late maturation marker, glucose-6-phosphatase in relation to early marker, alpha-fetoprotein (AFP), and the intracellular localization of albumin. Hepatocytes co-cultured with growth factor primed CE-ES cells markedly enhanced ES cell differentiation toward the hepatic lineage, an effect that was reversed through E-cadherin blockage and inhibited in control ES cells with reduced cadherin expression. Comparison of single ES cell cultures versus co-cultures show that direct contact co-cultures of hepatocytes and CE-ES cells maximally promoted ES cell commitment towards hepatodifferentiation, suggesting cooperative effects of cadherin-based juxtacrine and paracrine interactions. In contrast, E-cadherin deficient mouse ES (CD-ES) cells co-cultured with hepatocytes failed to show increased G6P expression, confirming the role of E-cadherin expression. To establish whether albumin expression in CE-ES cells was spatially regulated by co-cultured hepatocytes, we co-cultivated CE-ES cells around micropatterned, pre-differentiated rat hepatocytes. Albumin localization was enhanced "globally" within CE-ES cell colonies and was inhibited through E-cadherin antibody blockage in all but an interfacial band of ES cells. Thus, stem cell based cadherin presentation may be an effective tool to induce hepatotrophic differentiation by leveraging both distal/paracrine and contact/juxtacrine interactions with primary cells of the liver. 相似文献
19.
Leonardo D’Aiuto Yun Zhi Dhanjit Kumar Das Madeleine R Wilcox Jon W Johnson Lora McClain Matthew L MacDonald Roberto Di Maio Mark E Schurdak Paolo Piazza Luigi Viggiano Robert Sweet Paul R Kinchington Ayantika G Bhattacharjee Robert Yolken Vishwajit L Nimgaonka 《Organogenesis》2014,10(4):365-377
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases. 相似文献
20.
Fromigué O Hamidouche Z Chateauvieux S Charbord P Marie PJ 《Journal of cellular biochemistry》2008,104(2):620-628
Bone marrow-derived mesenchymal stem cells (MSC) are able to differentiate into osteoblasts under appropriate induction. Although MSC-derived osteoblasts are part of the hematopoietic niche, the nature of the stromal component in fetal liver remains elusive. Here, we determined the in vitro osteoblastic differentiation potential of murine clonal fetal liver-derived cells (AFT024, BFC012, 2012) in comparison with bone marrow-derived cell lines (BMC9, BMC10). Bone morphogenetic protein-2 (BMP2) increased alkaline phosphatase (ALP) activity, an early osteoblastic marker, in AFT024 and 2012 cells, whereas dexamethasone had little or no effect. BMP2, but not dexamethasone, increased ALP activity in BMC9 cells, and both inducers increased ALP activity in BMC10 cells. BMP2 increased ALP mRNA in AFT024, 2012 and BMC9 cells. By contrast, ALP was not detected in BMC10 and BFC012 cells. BMP2 and dexamethasone increased osteopontin and osteocalcin mRNA expression in 2012 cells. Furthermore, bone marrow-derived cells showed extensive matrix mineralization, whereas fetal liver-derived cell lines showed no or very limited matrix mineralization capacity. These results indicate that the osteoblast differentiation potential differs in bone marrow and fetal liver-derived cell lines, which may be due to a distinct developmental program or different microenvironment in the two hematopoietic sites. 相似文献