首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Random transposon Tn5 mutagenesis of Bradyrhizobium sp. (Arachis) strain NC92, a member of the cowpea cross-inoculation group, was carried out, and kanamycin-resistant transconjugants were tested for their symbiotic phenotype on three host plants: groundnut, siratro, and pigeonpea. Two nodulation (Nod- phenotype) mutants were isolated. One is unable to nodulate all three hosts and appears to contain an insertion in one of the common nodulation genes (nodABCD); the other is a host-specific nodulation mutant that fails to nodulate pigeonpea, elicits uninvaded nodules on siratro, and elicits normal, nitrogen-fixing nodules on groundnut. In addition, nine mutants defective in nitrogen fixation (Fix- phenotype) were isolated. Three fail to supply symbiotically fixed nitrogen to all three host plants. Surprisingly, nodules elicited by one of these mutants exhibit high levels of acetylene reduction activity, demonstrating the presence of the enzyme nitrogenase. Three more mutants have partially effective phenotypes (Fix +/-) in symbiosis with all three host plants. The remaining three mutants fail to supply fixed nitrogen to one of the host plants tested while remaining partially or fully effective on the other two hosts; two of these mutants are Fix- in pigeonpea and Fix +/- on groundnut and on siratro, whereas the other one is Fix- on groundnut but Fix+ on siratro and on pigeonpea. These latter mutants also retain significant nodule acetylene reduction activity, even in the ineffective symbioses. Such bacterial host-specific fixation (Hsf) mutants have not previously been reported.  相似文献   

2.
Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.  相似文献   

3.
DNA sequence homology with the plasmid pSA30 carrying the cloned nifHDK genes from Klebsiella pneumoniae was revealed in ten Frankia spp. strains, nitrogen-fixing symbionts of non-legumes, irrespective of the strain phenotype (Nod+Fix+, Nod+ Fix- or Nod- Fix?). None of the Frankia spp. DNAs exhibited homology with the plasmid pRmSL26 harbouring the Rhizobium meliloti nod-genes encoding for early symbiotic functions.  相似文献   

4.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor-activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization.  相似文献   

5.
It is known that the Rhizobium galegae genomes contain megaplasmids. The suicide vector pSUP2111 with nifH gene of R. meliloti was introduced into the strains CIAM 0703 and CIAM 0711 of R. galegae inducing effective nodules on Galega orientalis plants. The formation of self-transmissible megaplasmids was observed. The megaplasmid transfer into non-nodulating R. meliloti mutants resulted in partial complementation of the nodulation defect in recipient strains though only one transconjugant showed the nitrogen-fixing activity in symbiosis with alfalfa and another one in symbiosis with G. orientalis plants. Among the Agrobacterium strains harbouring R. galegae megaplasmids there were four classes of transconjugants: (1) Nod+ Fix- in symbiosis with goat's rue plants (three strains); (2) Nod+ Fix- on Medicago sativa (two strains); (3) Nod+ Fix+ on M. sativa (five strains); (4) Nod- with both plant hosts (11 strains).  相似文献   

6.
Alfalfa plants co-inoculated with Rhizobium meliloti nodulation (Nod-) and infection mutants deficient in exopolysaccharide production (Inf-EPS-) formed mixed infected nodules that were capable of fixing atmospheric nitrogen. The formation of infected nodules was dependent on close contact between the inoculation partners. When the partners were separated by a filter, empty Fix- nodules were formed, suggesting that infection thread formation in alfalfa is dependent on signals from the nodulation and infection genes. In mixed infected nodules, both nodulation and infection mutants colonized the plant cells and differentiated into bacteroids. The formation of bacteroids was not dependent on cell-to-cell contact between the mutants. Immunogold/silver staining revealed that the ratio of the two mutants varied considerably in colonized plant cells following mixed inoculation. The introduction of an additional nif/fix mutation into one of the inoculation partners did not abolish nitrogen fixation in mixed infected nodules. The expression of nif D::lacZ fusions additionally demonstrated that mutations in the nodulation and infection genes did not prevent the nif genes from being expressed in the mutant bacteroids.  相似文献   

7.
Localization of symbiotic mutations in Rhizobium meliloti   总被引:23,自引:18,他引:5       下载免费PDF全文
A total of 5 Nod- and 57 Fix- symbiotic mutants of Rhizobium meliloti strain 41 have been isolated after either nitrosoguanidine or Tn5 transposition mutagenesis. Chromosomal locations of mutations in 1 Nod- and 11 Fix- derivatives were ascertained by transferring the chromosome (mobilized by plasmid R68.45), in eight fragments, into symbiotically effective recipients and testing the recombinants for symbiotic phenotype. Alternatively, the kanamycin resistance marker of Tn5 was mapped. In five mutants the fix alleles were localized on different chromosomal regions, but six other fix mutations and one nod mutation tested did not map onto the chromosome. It was shown that the chromosome-mobilizing ability (Cma+) of R68.45 was not involved in the mobilization of genes located extrachromosomally. Moreover, Cma- derivatives of R68.45 could mobilize regions of the indigenous plasmid pRme41b but not chromosomal genes. Thus, mobilization of a marker by Cma- R68.45 indicates its extrachromosomal location. With a 32P-labeled DNA fragment carrying Tn5 as a hybridization probe, it was shown that in five extrachromosomally located Tn5-induced fix mutants and one nod mutant Tn5 was localized on plasmid pRme41b. This is in agreement with the genetic mapping data.  相似文献   

8.
Transposon Tn5 mutants of two Cicer-Rhizobium strains, G36-84 and F-75 tolerant to nitrate under symbiotic condition, have been developed. Suicide vector pGS9 was used as a source of Tn5 for insertion mutagenesis of Rhizobium. The mutants so developed were screened in the presence of nitrate under symbiotic condition for nodule formation (Nod) and N2-fixation (Fix) ability. We could get some mutants, which were Nod+ Fix+ at 1mM and 2 mM nitrate, from the parental strains which were Nod- at 1 mM nitrate.  相似文献   

9.
10.
Legumes form two different types of intracellular root symbioses, with fungi and bacteria, resulting in arbuscular mycorrhiza and nitrogen-fixing nodules, respectively. Rhizobial signalling molecules, called Nod factors, play a key role in establishing the rhizobium-legume association and genes have been identified in Medicago truncatula that control a Nod factor signalling pathway leading to nodulation. Three of these genes, the so-called DMI1, DMI2 and DMI3 genes, are also required for formation of mycorrhiza, indicating that the symbiotic pathways activated by both the bacterial and the fungal symbionts share common steps. To analyse possible cross-talk between these pathways we have studied the effect of treatment with Nod factors on mycorrhization in M. truncatula. We show that Nod factors increase mycorrhizal colonization and stimulate lateral root formation. The stimulation of lateral root formation by Nod factors requires both the same structural features of Nod factors and the same plant genes (NFP, DMI1, DMI2, DMI3 and NSP1) that are required for other Nod factor-induced symbiotic responses such as early nodulin gene induction and cortical cell division. A diffusible factor from arbuscular mycorrhizal fungi was also found to stimulate lateral root formation, while three root pathogens did not have the same effect. Lateral root formation induced by fungal signal(s) was found to require the DMI1 and DMI2 genes, but not DMI3. The idea that this diffusible fungal factor might correspond to a previously hypothesized mycorrhizal signal, the 'Myc factor', is discussed.  相似文献   

11.
12.
The genome of the slow-growing Bradyrhizobium japonicum (strain 110) was mutagenized with transposon Tn5. A total of 1623 kanamycin/streptomycin resistant derivatives were screened in soybean infection tests for nodulation (Nod) and symbiotic nitrogen fixation (Fix). In this report we describe 14 strains possessing a stable, reproducible Nod+Fix- phenotype. These strains were also grown under microaerobic culture conditions to test them for free-living nitrogen fixation activity (Nif). In addition to strains having reduced Fix and Nif activities, there were also strains that had reduced symbiotic Fix activity but were Nif+ ex planta.Analysis of the genomic structure revealed that the majority of the strains had a single Tn5 insertion without any further apparent physical alteration. A few strains had additional insertions (by Tn5 or IS50), or a deletion, or had cointegrated part of the vector used for Tn5 mutagenesis. One of the insertions was found in a known nif gene (nifD) whereas all other mutations seem to affect different, hitherto unknown genes or operons.Several mutant strains had an altered nodulation phenotype, inducing numerous, small, widely distributed nodules. Light and electron microscopy revealed that most of these mutants were defective in different stages of bacteroid development and/or bacteroid persistence. The protein patterns of the mutants were inspected by two-dimensional gel electrophoresis after labelling microaerobic cultures with l-(35S)methionine. Of particular interest were mutants lacking a group of proteins the synthesis of which was known to be under oxygen control. Such strains can be regarded as potential regulatory mutants.  相似文献   

13.
Root nodule formation is regulated by several plant hormones, but the details of the regulation of the nodulation signaling pathway are largely unknown. In this study, the role of gibberellin (GA) in the control of root nodule symbiosis was investigated at the physiological and genetic levels in Lotus japonicus . Exogenous application of biologically active GA, GA3, inhibited the formation of infection threads and nodules, which was counteracted by the application of a biosynthesis inhibitor of GA, Uniconazole P. Nod factor-induced root hair deformation was severely blocked in the presence of GA, which was phenocopied by nsp2 mutants. The number of spontaneous nodules triggered by the gain-of-function mutation of calcium/calmodulin-dependent kinase (CCaMK) or the lotus histidine kinase 1 (LHK1) was decreased upon the addition of GA; moreover, the overexpression of the gain-of-function mutation of L. japonicus , SLEEPY1, a positive regulator of GA signaling, resulted in a reduced nodule number, without other aspects of root development being affected. These results indicate that higher GA signaling levels specifically inhibit the nodulation signaling pathway. Nod factor-dependent induction of NSP2 and NIN was inhibited by exogenous GA. Furthermore, the cytokinin-dependent induction of NIN was suppressed by GA. From these results, we conclude that GA inhibits the nodulation signaling pathway downstream of cytokinin, possibly at NSP2, which is required for Nod factor-dependent NIN expression. These results clarify the roles of GA in the nodulation signaling pathway, and in relation to the cytokinin signaling pathway for nodulation in L. japonicus .  相似文献   

14.
The establishment of the legume-rhizobia symbiosis between Medicago spp. and Sinorhizobium meliloti is dependent on the production of sulfated lipo-chitooligosaccharidic nodulation (Nod) factors by the bacterial partner. In this article, using a biochemical approach to characterize putative Nod factor receptors in the plant host, we describe a high-affinity binding site (Kd = 0.45 nm) for the major Nod factor produced by S. meliloti. This site is termed Nod factor-binding site 3 (NFBS3). NFBS3 is associated to a high-density fraction prepared from roots of Medicago truncatula and shows binding specificity for lipo-chitooligosaccharidic structures. As for the previously characterized binding sites (NFBS1 and NFBS2), NFBS3 does not recognize the sulfate group on the S. meliloti Nod factor. Studies of Nod factor binding in root extracts of early symbiotic mutants of M. truncatula reveals that the new site is present in Nod factor perception and does not make infections 3 (dmi3) mutants but is absent in dmi1 and dmi2 mutants. Roots and cell cultures of all these mutants still contain sites similar to NFBS1 and NFBS2, respectively. These results suggest that NFBS3 is different from NFBS2 and NFBS1 and is dependent on the common symbiotic genes DMI1 and DMI2 required for establishment of symbioses with both rhizobia and arbuscular mycorrhizal fungi. The potential role of this site in the establishment of root endosymbioses is discussed.  相似文献   

15.
16.
Rhizobium nodulation (Nod) factors are specific lipochito-oligosaccharide signals essential for initiating in root hairs of the host legume developmental responses that are required for controlled entry of the microsymbiont. In this article, we focus on the Nod factor signal transduction pathway leading to specific and cell autonomous gene activation in Medicago truncatula cv Jemalong in a study making use of the Nod factor-inducible MtENOD11 gene. First, we show that pharmacological antagonists that interfere with intracellular ion channel and Ca2+ pump activities are efficient blockers of Nod factor-elicited pMtENOD11-beta-glucuronidase (GUS) expression in root hairs of transgenic M. truncatula. These results indicate that intracellular Ca2+ release and recycling activities, essential for Ca2+ spiking, are also required for specific gene activation. Second, pharmacological effectors that inhibit phospholipase D and phosphoinositide-dependent phospholipase C activities are also able to block pMtENOD11-GUS activation, thus underlining a central role for multiple phospholipid signaling pathways in Nod factor signal transduction. Finally, pMtENOD11-GUS was introduced into all three Nod-/Myc- dmi M. truncatula mutant backgrounds, and gene expression was evaluated in response to the mastoparan peptide agonist Mas7. We found that Mas7 elicits root hair MtENOD11 expression in dmi1 and dmi2 mutants, but not in the dmi3 mutant, suggesting that the agonist acts downstream of DMI1/DMI2 and upstream of DMI3. In light of these results and the recently discovered identities of the DMI gene products, we propose an integrated cellular model for Nod factor signaling in legume root hairs in which phospholipids play a key role in linking the Nod factor perception apparatus to downstream components such as Ca2+ spiking and ENOD gene expression.  相似文献   

17.
We investigated the role of three autoregulation of nodulation (AON) genes in regulating of root and shoot phenotypes when responding to changing nitrogen availability in the model legume, Medicago truncatula. These genes, RDN1‐1 (ROOT DETERMINED NODULATION1‐1), SUNN (SUPER NUMERIC NODULES), and LSS (LIKE SUNN SUPERNODULAOR), act in a systemic signalling pathway that limits nodule numbers. This pathway is also influenced by nitrogen availability, but it is not well known if AON genes control root and shoot phenotypes other than nodule numbers in response to nitrogen. We conducted a controlled glasshouse experiment to compare root and shoot phenotypes of mutants and wild type plants treated with four nitrate concentrations. All AON mutants showed altered rhizobia‐independent phenotypes, including biomass allocation, lateral root length, lateral root density, and root length ratio. In response to nitrogen, uninoculated AON mutants were less plastic than the wild type in controlling root mass ratio, root length ratio, and lateral root length. This suggests that AON genes control nodulation‐independent root architecture phenotypes in response to nitrogen. The phenotypic differences between wild type and AON mutants were exacerbated by the presence of nodules, pointing to resource competition as an additional mechanism affecting root and shoot responses to nitrogen.  相似文献   

18.
Following treatment with nitrosoguanidine, mutant derivatives of Rhizobium leguminosarum strain 3841 were isolated which failed to react with AFRC MAC 203. This monoclonal antibody normally recognizes a strain-specific lipopolysaccharide epitope which is developmentally regulated during legume nodule differentiation. Structural modification of lipopolysaccharide (LPS) was analysed by examining reactivity with a range of monoclonal antibodies with different epitope specificities, and also by analysis of LPS mobility changes after electrophoresis on polyacrylamide gels. One class of these LPS-defective mutants induced normal nitrogen-fixing (Fix+) nodules on peas (Pisum sativum), while another two classes of Fix- mutants were also identified, suggesting that a component of the LPS antigen that is part of the MAC 203 epitope is essential for normal nodule development leading to symbiotic nitrogen fixation. When grown under low-oxygen or low-pH culture conditions, one class of Fix- mutants completely lacked LPS-1 (the species that carries O antigen) and a second class showed a modified and truncated form of LPS-1. Mutants with defective LPS structure were also obtained after Tn5 mutagenesis of R. leguminosarum 3841 and all nine Fix- mutants were also found to lack the MAC 203 epitope. Three of these transposon-induced mutants synthesized a truncated form of LPS-1 that was structurally similar to that of the class of the NTG-induced mutants described above. These transposon-induced mutations, and the nitrosoguanidine-induced Fix- mutations, were closely linked and could be suppressed by the same cloned fragment of chromosomal DNA. The data presented here suggest that a precondition for normal nodule development of R. leguminosarum 3841 within pea nodules is the ability to synthesize relatively long-chain LPS-1 macromolecules under the physiological conditions encountered within the nodule. All mutants that lacked the ability to elongate LPS-1 macromolecules also failed to express the MAC 203 epitope.  相似文献   

19.
Ten isoleucine+valine and three leucine auxotrophs of Sinorhizobium meliloti Rmd201 were obtained by random mutagenesis with transposon Tn5 followed by screening of Tn5 derivatives on minimal medium supplemented with modified Holliday pools. Based on intermediate feeding, intermediate accumulation and cross-feeding studies, isoleucine+valine and leucine auxotrophs were designated as ilvB/ilvG, ilvC and ilvD, and leuC/leuD and leuB mutants, respectively. Symbiotic properties of all ilvD mutants with alfalfa plants were similar to those of the parental strain. The ilvB/ilvG and ilvC mutants were Nod-. Inoculation of alfalfa plants with ilvB/ilvG mutant did not result in root hair curling and infection thread formation. The ilvC mutants were capable of curling root hairs but did not induce infection thread formation. All leucine auxotrophs were Nod+ Fix-. Supplementation of leucine to the plant nutrient medium did not restore symbiotic effectiveness to the auxotrophs. Histological studies revealed that the nodules induced by the leucine auxotrophs did not develop fully like those induced by the parental strain. The nodules induced by leuB mutants were structurally more advanced than the leuC/leuD mutant induced nodules. These results indicate that ilvB/ilvG, ilvC and one or two leu genes of S. meliloti may have a role in symbiosis. The position of ilv genes on the chromosomal map of S. meliloti was found to be near ade-15 marker.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号