首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of the generation and characterization of corticotropin-releasing hormone (CRH)-deficient mice is presented. The studies summarized demonstrate the central role of CRH in the pituitary-adrenal axis response to stress, circadian stimulation, and glucocorticoid withdrawal. Additionally, pro-inflammatory actions of CRH at sites of local inflammation are given further support. In contrast, behavioral effects during stress that had been ascribed to CRH action are not altered in CRH-deficient mice. The normal behavioral response to stress in CRH-deficient mice strongly suggests the importance of other, possibly as yet undiscovered, CRH-like molecules.  相似文献   

2.
CRH in chronic inflammatory stress   总被引:3,自引:0,他引:3  
Jessop DS  Harbuz MS  Lightman SL 《Peptides》2001,22(5):803-807
Corticotropin-releasing hormone (CRH) is an important regulator of inflammation at the central level through hypothalamo-pituitary-adrenal (HPA) axis control of glucocorticoid secretion. Integrity of the HPA axis during autoimmune disease is critical in controlling the severity of inflammation, but the evidence for an HPA axis defect in the etiology of autoimmune diseases is not compelling. CRH secreted from leukocytes and neuronal terminals in peripheral tissues also plays a role in mediating inflammation. Elucidating the pathways underlying the expression of CRH, both central and peripheral, and interactions of CRH with other inflammatory mediators such as substance P, confers great potential for the development of a new generation of anti-inflammatory agents.  相似文献   

3.
The hypothalamic-pituitary-adrenal (HPA) axis is a dynamic oscillatory hormone signalling system that regulates the pulsatile secretion of glucocorticoids from the adrenal glands. In addition to regulation of basal levels of glucocorticoids, the HPA axis provides a rapid hormonal response to stress that is vitally important for homeostasis. Recently it has become clear that glucocorticoid pulses encode an important biological signal that regulates receptor signalling both in the central nervous system and in peripheral tissues. It is therefore important to understand how stressful stimuli disrupt the pulsatile dynamics of this system. Using a computational model that incorporates the crucial feed-forward and feedback components of the axis, we provide novel insight into experimental observations that the size of the stress-induced hormonal response is critically dependent on the timing of the stress. Further, we employ the theory of Phase Response Curves to show that an acute stressor acts as a phase-resetting mechanism for the ultradian rhythm of glucocorticoid secretion. Using our model, we demonstrate that the magnitude of an acute stress is a critical factor in determining whether the system resets via a Type 1 or Type 0 mechanism. By fitting our model to our in vivo stress-response data, we show that the glucocorticoid response to an acute noise stress in rats is governed by a Type 0 phase-resetting curve. Our results provide additional evidence for the concept of a deterministic sub-hypothalamic oscillator regulating the ultradian glucocorticoid rhythm, which constitutes a highly responsive peripheral hormone system that interacts dynamically with hypothalamic inputs to regulate the overall hormonal response to stress.  相似文献   

4.
5.
Kasckow JW  Baker D  Geracioti TD 《Peptides》2001,22(5):845-851
Corticotropin-releasing hormone (CRH) has been implicated in the regulation of a wide range of behaviors including arousal, motor function, feeding, and reproduction. Because depressed patients are often hypercortisolemic and intracerebroventricular administration of CRH to experimental animals produces a syndrome reminiscent of depression, dysregulation of this compound has been suggested to be involved in the pathogenesis of depressive and anxiety disorders. Studies of cerebrospinal fluid CRH levels and clinical neuroendocrine tests in patients with anxiety and affective disorders have supported this hypothesis. This review discusses these neuroendocrine findings in melancholic and atypical depression as well as post-traumatic stress disorder (PTSD). Overall, the data suggest that melancholic depression is characterized by hyperactive central CRH systems with overactivity of the pituitary-adrenal (HPA) axis. On the other hand, atypical depression is characterized by hypoactive central CRH systems and accompanying underactivity of the hypothalamic-pituitary-adrenal axis. Furthermore, the neuroendocrinology of PTSD appears to be unique, in that patients have hyperactive central CRH systems with underactivity of the pituitary-adrenal axis.  相似文献   

6.
7.
Running training on the treadmill increases the resting hypothalamic corticotropin-releasing hormone (CRH) content in rats, though is still unknown whether and how it occurs in the parvocellular region of the hypothalamic paraventricular nucleus (PVN) where is a predominant region of pituitary-adrenal activity and where CRH and arginine vasopressin (AVP) are colocalized. We thus aimed at examining whether treadmill training would alter the CRH and AVP mRNA levels in the PVN at rest and during acute running with different lengths of a training regime. Male Wistar rats were subjected to treadmill running (approximately 25 m/min, 60 minutes/day, 5 times/week) for training regimes of 0, 1, 2 or 4 weeks. All training regimes induced an adrenal hypertrophy. Plasma corticosterone levels before acute running increased with lengthening the training period. Four weeks of training produced a significant increase in the resting CRH, but not AVP, mRNA levels in the PVN though relatively shorter training regimes did not. Acute responses of lactate and ACTH release were reduced after 2 and 4 weeks of training, respectively. The responsive PVN CRH mRNA level to acute running decreased with 4 weeks of training but increased with relatively shorter training regimes. These results indicate that running training changes the PVN CRH biosynthetic activity with the regime lasting for 4 weeks, which follows adaptive changes in adrenal functions. Thus, running training-induced changes in hypothalamic CRH activity would originate from the PVN and be induced according to the training period.  相似文献   

8.
Early sleep in humans is characterized by a distinct suppression of pituitary-adrenal activity coinciding with enhanced activity of the somatotropic axis. Here, we tested in awake humans the hypothesis of an inhibiting influence of hypothalamic growth hormone-releasing hormone (GHRH) on pituitary-adrenal activity. For this purpose, pituitary-adrenal activity was stimulated in 10 men through a standard insulin-hypoglycemia-test (IHT) and in another 10 men through combined administration of CRH/vasopressin. Stimulation was performed in each man on three conditions following pretreatment with Placebo and GHRH administered intravenously (50 microg) or intranasally (300 microg) 1 h before. GH, ACTH and cortisol as well as blood pressure and heart rate were measured repeatedly. Contrary to expectations, pretreatment with GHRH did not suppress but enhanced secretion of cortisol upon insulin-induced hypoglycemia regardless of the route of GHRH pretreatment (p<0.05). In contrast, GHRH did not facilitate cortisol release after stimulation with CRH/vasopressin. Changes in ACTH remained inconsistent. Plasma levels of GH increased significantly after i.v. GHRH application, but remained unchanged after the intranasal administration. Blood pressure and heart rate were not influenced by the treatments. Results indicate facilitating effects of GHRH mediated at a suprapituitary (i.e. hypothalamic) level as suggested by restriction of the effect to the hypoglycemia-induced cortisol release with no effects after pituitary stimulation with CRH/vasopressin.  相似文献   

9.
We recently found circulating corticosterone (CS) levels to be significantly lower in diabetic female rats as compared with proestrous control animals. This reduction in CS was correlated with the hypoestrogenic state of the diabetic female. It was the purpose of this study to evaluate basal and corticotropin releasing hormone (CRH)-stimulated CS secretion in ovariectomized (OVX) control (C) and streptozotocin-induced diabetic (D) rats given blank, 5 mcg and 20 mcg estradiol (E2) implants to determine if adrenal CS secretion in the diabetic is normalized by E2 treatment. After 3 weeks of diabetes, pituitary-adrenal function was assessed in rats from each group with a CRH stimulation test. The remaining rats were sacrificed for determination of CS, E2, testosterone and fructosamine in serum. Suppressed CS secretion in OVX female diabetic rats was partially restored with E2 therapy. Basal CS levels were significantly higher in 20 mcg E2 treated C and D rats compared with OVX rats. However, C rats had significantly higher basal CS compared with D rats in similarly E2 treated groups. The CS response to CRH stimulation was not different between OVX female diabetic and control rats. Estrogen enhanced the CS response to CRH stimulation in control animals but not in diabetic animals suggesting altered estrogen action at the pituitary level in diabetic animals.  相似文献   

10.
Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.  相似文献   

11.
It has long been known that ACTH is secreted in an episodic fashion demonstrating circadian and ultradian rhythms. High intensity venous sampling has recently revealed that in addition to these larger ultradian fluctuations in hormone levels, plasma ACTH in rats demonstrates high frequency, low amplitude oscillations which have been called "micropulses." These micropulses were not detected in previous studies due to sampling intervals of greater than 5 minutes. To investigate the presence of these ACTH micropulses in a primate species, blood samples were drawn from six chair-restrained rhesus monkeys at one-minute intervals for up to 70 minutes and plasma was assayed for immunoreactive ACTH. To assess the variation in ACTH micropulse parameters with time of day and the relationship to cortisol secretion, four of the monkeys were sampled for three 70-minute periods beginning at 0530, 1100, and 1730 hours, and plasma was assayed for immunoreactive ACTH and cortisol. Analysis of the data revealed that ACTH and cortisol are secreted in micropulses in rhesus monkeys with marked individual variation in the pattern of secretion and a concurrence of approximately 75% of ACTH and cortisol micropulses. Difference in pulse amplitude but not frequency appeared to contribute to the circadian variation in mean ACTH levels and a sampling interval of two minutes appeared to be adequate for accurately identifying micropulses of ACTH.  相似文献   

12.
Increased blood levels of glucocorticoids are observed during certain viral infections. In this paper, we report data obtained from a model in rodents showing that the pituitary-adrenal axis is stimulated following inoculation of Newcastle Disease Virus (NDV). No evidence for an ectopic, lymphoid source of ACTH-like immunoreactive material capable of inducing this effect was obtained. Administration of virus-free supernatants from cocultures of human peripheral blood leukocytes with NDV also stimulated ACTH and glucocorticoid output in normal mice. This observation showed the immunological cell origin of the mediator of the hormonal effect. Pretreatment of the supernatant with anti-IL-1 sera neutralized its capacity to induce an increase in glucocorticoid and ACTH levels in blood. Furthermore, injection of IL-1 in nanogram amounts also increased ACTH and glucocorticoid blood levels. Thus, we conclude that IL-1 is the most likely mediator of the stimulation of the pituitary-adrenal axis during viral infection. The reported data are also discussed in the general context of the postulated glucocorticoid-associated immunoregulatory circuit.  相似文献   

13.
14.
The changes in the levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) in the neurointermediate lobe of the pituitary (NIL) following hypertonic saline administration were examined in rats. The plasma osmotic pressure in rats receiving 2% NaCl for 8 days was greatly increased. Plasma AVP concentration in rats receiving 2% NaCl for 8 days were significantly higher than in control rats (566% of the control level). Plasma corticosterone was significantly higher in the saline-treated rats than in controls, whereas plasma ACTH was not significantly different. The pituitary ACTH concentration was much higher in the saline-treated rats than in controls. CRH in the NIL was increased significantly by saline treatment (419% of the control concentration), whereas the CRH in the paraventricular nucleus and median eminence of control and saline-treated rats did not differ significantly. The AVP in the NIL fell greatly in saline treated rats. The extract from both control and saline-treated rats showed a major peak for immunoreactive CRH, with a retention time identical to that of rat CRH. However, the peak was much higher in the extract from saline-treated rats. The immunoreactive AVP peak was greatly reduced in saline-treated rats. These results suggest that hypertonic saline administration increases the CRH in the NIL and causes AVP hypersecretion and/or hyperfunction of magnocellular-NIL CRH might be responsible for pituitary-adrenal stimulation in saline-treated rats.  相似文献   

15.
16.
In the glucose-insulin regulatory system, ultradian insulin secretory oscillations are observed to have a period of 50-150 min. After pioneering work traced back to the 1960s, several mathematical models have been proposed during the last decade to model these ultradian oscillations as well as the metabolic system producing them. These currently existing models still lack some of the key physiological aspects of the glucose-insulin system. Applying the mass conservation law, we introduce two explicit time delays and propose a more robust alternative model for better understanding the glucose-insulin endocrine metabolic regulatory system and the ultradian insulin secretory oscillations for the cases of continuous enteral nutrition and constant glucose infusion. We compare the simulation profiles obtained from this two time delay model with those from the other existing models. As a result, we notice many unique features of this two delay model. Based on our intensive simulations, we suspect that one of the possibly many causes of ultradian insulin secretion oscillations is the time delay of the insulin secretion stimulated by the elevated glucose concentration.  相似文献   

17.
The pituitary-adrenal secretory response to acute and chronic stress, suppressibility of adrenocortical secretions by exogenous glucocorticoids, and hypothalamic content and in vitro release of the two major peptidergic activators of the hypothalamo-pituitary-adrenal (HPA) axis, corticotropinreleasing hormone (CRH) and arginine-vasopressin (AVP), were examined in rats receiving daily melatonin (MEL) injections coincident with the circadian increment of endogenous pineal and adrenocortical secretory activity. After 7 days of MEL administration, the rats displayed a significant attenuation of the adrenocortical secretory response to acute and chronic stress. Chronic MEL treatment also prevented the decline in adrenocorticotropic hormone (ACTH) release resulting from chronic stress exposure. Hypothalamic CRH content was significantly lower in rats receiving MEL treatment, while AVP remained largely unaltered; however, MEL administration counteracted the chronic stress-induced decrease in hypothalamic AVP content and in vitro release. When exposed to dexamethasone in vitro, hypothalamic explants from MEL-treated rats responded with a stronger suppression of CRH and AVP release than those originating from vehicle-injected animals. These observations indicate that MEL attenuates the adrenocortical response to stress and influences the biosynthesis, release and glucocorticoid responsiveness of hypothalamic ACTH secretagogues.  相似文献   

18.
We investigated the responses of the hypothalamic-pituitary-adrenal (HPA) axis during experimental colitis induced by intracolonic administration of 2,4,6-trinitrobenzenesulfonic acid in the rat. On days 3 and 7 after induction of colitis, the corticotropin-releasing hormone (CRH) mRNA level in the parvocellular paraventricular nucleus (pPVN) of the hypothalamus was reduced, the plasma ACTH level remained at the basal level, and the plasma corticosterone (Cort) level was high. Induction of colitis on day 3 after adrenalectomy with Cort pellet replacement (ADX + Cort) resulted in a marked increase in CRH mRNA on day 7 after induction of colitis compared with noncolitic ADX + Cort animals. Pair feeding to match the food intake of the colitic animals resulted in no significant change in CRH mRNA in the pPVN, plasma ACTH, and Cort compared with healthy control animals. These findings indicated that CRH mRNA expression in the pPVN was inhibited by glucocorticoid feedback during this experimental colitis, and the decrease in food intake during colitis was not simply responsible for the expression of CRH mRNA. It is inferred that the HPA axis including the CRH level in the pPVN is altered in patients with inflammatory bowel disease.  相似文献   

19.
Alcohol ingestion stimulates glucocorticoid secretion in animals and normal men. It is generally believed that this effect is mediated through the pituitary-adrenal axis. To investigate its mechanism, we focussed on the effects of ethanol on cortisol binding to plasma proteins and to glucocorticoid receptors, and on cortisol uptake by erythrocytes. Addition of ethanol (up to 800 mg/dl) decreased cortisol binding to albumin and corticosteroid-binding globulin (CBG), causing an increase in the plasma unbound component. Ethanol also decreased cortisol binding to glucocorticoid receptors in normal human peripheral lymphocytes. The uptake of cortisol by erythrocytes was not affected at ethanol concentrations as high as 2000 mg/dl. These results provide new insight to ethanol effects in vivo. The stimulatory effect of ethanol on the pituitary-adrenal axis appears to be attributable in part to a relative ineffectiveness of cortisol in cortisol-responsive cells consequent to ethanol's ability to diminish cortisol binding to glucocorticoid receptors. A compensatory increase in ACTH secretion in response to the relative hypoglucocorticoid state perceived by corticotrophs would result in maintenance of elevated plasma unbound cortisol and cytosol cortisol levels. We conclude that altered interactions of cortisol with its receptors and transport proteins could be pathophysiological components of the changes in adrenocortical function induced by ethanol ingestion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号