首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The carboxyl-terminal sequence of the lac repressor protein contains heptad repeats of leucines at positions 342, 349, and 356 that are required for tetramer assembly, as substitution of these leucine residues yields solely dimeric species (Chakerian, A. E., Tesmer, V. M., Manly, S. P., Brackett, J. K., Lynch, M. J., Hoh, J. T., and Matthews, K. S. (1991) J. Biol. Chem. 266, 1371-1374; Alberti, S., Oehler, S., von Wilcken-Bergmann, B., Kr?mer, H., and Müller-Hill, B. (1991) New Biol. 3, 57-62). To further investigate this region, which may form a leucine zipper motif, a family of lac repressor carboxyl-terminal deletion mutants eliminating the last 4, 5, 11, 18, and 32 amino acids (aa) has been constructed. The -4 aa mutant, in which all of the leucines in the presumed leucine zipper are intact, is tetrameric and displays operator and inducer binding properties similar to wild-type repressor. The -5 aa, -11 aa, -18 aa, and -32 aa deletion mutants, depleted of 1, 2, or all 3 of the leucines in the heptad repeats, are all dimeric, as demonstrated by gel filtration chromatography. Circular dichroism spectra and protease digestion studies indicate similar secondary/tertiary structures for the mutant and wild-type proteins. Differences in reaction with a monoclonal antibody specific for a subunit interface are observed for the dimeric versus tetrameric proteins, indicative of exposure of the target epitope as a consequence of deletion. Inducer binding properties of the deletion mutants are similar to wild-type tetrameric repressor at neutral pH. Only small differences in affinity and cooperativity from wild-type are evident at elevated pH; thus, the cooperative unit within the tetramer appears to be the dimer. "Apparent" operator binding affinity for the dimeric proteins is diminished, although minimal change in operator dissociation rate constants was observed. The diminution in apparent operator affinity may therefore derive from either 1) dissociation of the dimeric mutants to monomer generating a linked equilibrium or 2) alterations in intrinsic operator affinity of the dimers; the former explanation is favored. This detailed characterization of the purified mutant proteins confirms that the carboxyl-terminal region is involved in the dimer-dimer interface and demonstrates that cooperativity for inducer binding is contained within the dimer unit of the tetramer structure.  相似文献   

2.
Hemoglobin is a tetrameric protein with two alpha and two beta subunits binds oxygen in a cooperative manner. In dominant tetrameric form of fish hemoglobin carry more than 90 percent of oxygen from gill to tissues at 20° C. The tetrameric form of fish hemoglobin is changed to monomeric form at low oxygen pressure in order to increase its oxygen affinity. This is one of adaptive mechanisms used by different kinds of fish. The major aim of this paper is to study the molecular basis of shirbot hemoglobin adaptation mechanism to various environmental conditions. Using different methods such as ion exchange chromatography, UV-Vis, fluorescence and circular dichroism spectroscopy, we extracted the main tetrameric fraction of shirbot hemoglobin and studied the structural characteristics of shirbot and human hemoglobins in a comparative way. Our results showed that tetrameric form of shirbot hemoglobin has less stable and loosely folded structure in contrast to human hemoglobin. Our data also indicate, in case of exposure to life-threatening environmental factors such as low oxygen level, acidic pH, oxidizing chemicals and other water pollutants especially detergents (surfactants) triggering tetramer to monomer dissociation in shirbot hemoglobin is more prominently than in human hemoglobin. The resulting monomer of hemoglobin has more oxygen affinity and could take up oxygen more strongly even at low pressure. We hypothesize that this mechanism helps shirbot to adapt and to survive at such harsh environment. The mechanism that is may be adapted by other fish species.  相似文献   

3.
The irreversible thermal inactivation of the sugarcane leaf NADP(+)-malic enzyme was studied at 50 degrees C and pH 7.0 and 8.0. Depending on the preincubation conditions, thermal inactivation followed mono- or biphasic first-order kinetics. A two-step behavior in the irreversible denaturation process was found when protein concentration was sufficiently low. The protein concentration necessary to obtain monlphasic thermal inactivation kinetics was lower at pH 8.0 than at pH 7.0. The results suggest that biphasic inactivation kinetics are the consequence of the existence of two different oligomeric forms of the enzyme (dimer and tetramer), with the dimer being more stable in regards to thermal inactivation. The effects of the substrate and essential cofactors on the thermostability and equilibrium between the dimeric and tetrameric enzyme forms were also studied. Depending on the pH, NADP+, L-malate, and Mg2+ all had a protective effect on the stability of the dimeric and tetrameric species during thermal treatment. However, these ligands showed different effects on the aggregation state of the enzyme. NADP+ and L-malate induced dissociation, especially at pH 8.0, whereas Mg2+ induced aggregation of the protein. By studying the thermal inactivation kinetics at 50 degrees C and different pH values it was observed that the equilibrium between dimers and tetramers was dramatically affected in the range of pH 7.0-8.0. These results suggest that an amino acid residue(s) in the protein with an apparent pKa value of 7.7 needs to be deprotonated to stabilize aggregation of the enzyme to the tetrameric form.  相似文献   

4.
We report the use of electrospray ionization (ESI) mass spectrometry (MS) in conjunction with online rapid mixing to monitor the kinetics of acid-induced ferrihemoglobin denaturation. Under equilibrium conditions, the hemoglobin mass spectrum is dominated by the intact heterotetramer. Dimeric and monomeric species are also observed at lower intensities. In addition, ionic signals corresponding to hexameric (tetramer-dimer) and octameric (tetramer x 2) hemoglobin species are observed. These complexes may represent weak solution-phase assemblies. The acid-induced denaturation process was monitored for reaction time ranging from 9 ms to approximately 3 s. The data obtained were subjected to a global analysis procedure which simultaneously fit all kinetic (ESI-MS intensity vs time) profiles to multiexponential expressions. Results of the global analysis are consistent with the coexistence of two subpopulations of tetrameric hemoglobin which differ in their disassembly rates and ESI charge states. The higher-charge state tetramer ions preferentially dissociate via a rapid pathway (tau(1) = 51 ms), resulting in the transient formation of a heme-saturated dimer, holo-alpha-globin, and a heme-deficient dimer. The latter is shown by MS/MS to be comprised of a heme-bound alpha-subunit complexed with an apo-beta-chain. The slow-decaying tetramer population, apparent at a slightly lower average charge state, breaks down into its monomeric constituents with no observable intermediate species (tau(2) = 390 ms). Surprisingly, unfolded apo-alpha-globin is formed more rapidly than unfolded apo-beta-globin. The appearance of the latter occurs with a relaxation time tau(3) of 1.2 s. It is postulated that accumulation of unfolded apo-beta-globin is delayed by transient population of an undetected unfolding intermediate.  相似文献   

5.
The hemocyanin of the channeled whelk, Busycon canaliculatum, is a multisubunit protein with a molecular weight close to 9 X 10(6). The increase in pH above neutrality and the addition of 0-5 M urea and 0-2 M GdnHCl is found to dissociate the whole molecules to half-molecules and smaller dimeric and monomeric fragments of one-tenth and one-twentieth mass of the parent hemocyanin. The molecular weight transitions investigated at constant protein concentration of 5 X 10(-2) g X l-1 show no clearly discernible plateau regions, where essentially only half-molecules and one-tenth molecules are present. The ultracentrifugation patterns in much of the dissociation region produced by urea at pH 6.9 suggests the presence of three distinct components consisting of whole molecules, half-molecules and largely one-tenth molecular weight fragments. At pH 8.2 and higher, where whole molecules are largely absent, the effects of urea on the dissociation of half-molecules to tenths and tenth-molecules to twentieth molecule was investigated by means of light scattering. Analysis of the urea data based on a decamer to dimer and dimer to monomer scheme of dissociation used in our earlier studies gave apparent estimates of about 90 amino acid groups at the contact areas of the dimers in the half-molecules and 110 groups at the monomer contacts forming the dimers. The latter relatively large estimate of groups suggests that the dissociation of the tenth molecules or dimers must occur by longitudinal splitting of the contact areas along both the folded domains and the connecting chain segments of the twentieth molecules. Circular dichroism, absorbance and viscosity data suggest that the secondary structure and conformation of the folded domains of the hemocyanin subunits are largely retained at both high pH and in 3-8 M urea solutions. The molecular weights at pH 9.0-10.6 and in 3-8 M urea are found to be (4.2-4.7) X 10(5), close to one-twentieth of the mass of the parent hemocyanin. Denaturation and unfolding of the subunit domains is observed between 3 and 6 M GdnHCl solutions, as evidenced by the abolition of the characteristic copper absorbance in the neighborhood of 346 nm and the relatively pronounced changes in circular dichroism at 222 nm and intrinsic viscosity. The further decrease in molecular weights to about (2.6-3.2) X 10(5), below one-twentieth of the mass of hemocyanin suggests the presence of hidden breaks or scissions in the polypeptide chains suffered during isolation, which become exposed as a result of complete unfolding in GdnHCl solutions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Apoferritin from horse spleen is composed of 24 subunits that undergo partial dissociation after chemical modification with 2,3-dimethylmaleic anhydride (DMMA), yielding dimeric, trimeric, and tetrameric intermediates, stable at pH 8.5 and 0 degrees C. Deacylation at neutral pH and elevated temperature provides a means to initiate reassembly by appropriate shifts of the solvent conditions. In order to monitor the pathway of self-assembly, starting from different intermediates of dissociation, dimers, trimers, and tetramers were isolated and investigated with respect to their capacity to accomplish reassociation. Intrinsic protein fluorescence, gel permeation chromatography, and analytical ultracentrifugation were applied to characterize the intermediate and final stages of association. The assembly of both the dimer and trimer yields greater than 85% of the native tetracosamer; the overall rate, starting from the dimer, exceeds the one starting from the trimer. Under comparable conditions, the tetramer exhibits only partial reassociation via the dimer and monomer; the corresponding dissociation reaction determines the observed slower rate. Significant assembly intermediates are "structured monomers", dimers, trimers, and dodecamers. Polymerization of the dimer via the tetramer, octamer, etc., does not occur on the pathway of assembly. The results confirm the assembly scheme proposed previously on the basis of cross-linking and spectroscopic experiments [Gerl, M., & Jaenicke, R. (1987) Eur. Biophys. J. 15, 103-109]. Comparison of structural models involving the different subunit interactions responsible for the sequential association supports the monomer----dimer----trimer----hexamer----dodecamer----tetracosamer mechanism of apoferritin self-assembly.  相似文献   

7.
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c′ from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four‐helix bundle structure containing a covalently bound five‐coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer–monomer transition according to the absence and presence of CO. Herein, domain‐swapped dimeric AVCP was constructed and utilized to form a tetramer and high‐order oligomers. The X‐ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain‐swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain‐swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit–subunit interactions at the interfaces of the domain‐swapped dimer and monomer subunits in the tetramer were also similar to the subunit–subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain‐swapped dimer and two monomers upon CO binding. Without monomers, the domain‐swapped dimers formed tetramers, hexamers, and higher‐order oligomers in the absence of CO, whereas the oligomers dissociated to domain‐swapped dimers in the presence of CO, demonstrating that the domain‐swapped dimer maintains the CO‐induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer–monomer transition protein.  相似文献   

8.
In biological systems, proteins rarely act as isolated monomers. Association to dimers or higher oligomers is a commonly observed phenomenon. As an example, small heat shock proteins form spherical homo-oligomers of mostly 24 subunits, with the dimeric α-crystallin domain as the basic structural unit. The structural hierarchy of this complex is key to its function as a molecular chaperone. In this article, we analyze the folding and association of the basic building block, the α-crystallin domain dimer, from the hyperthermophilic archaeon Methanocaldococcus jannaschii Hsp16.5 in detail. Equilibrium denaturation experiments reveal that the α-crystallin domain dimer is highly stable against chemical denaturation. In these experiments, protein dissociation and unfolding appear to follow an “all-or-none” mechanism with no intermediate monomeric species populated. When the mechanical stability was determined by single-molecule force spectroscopy, we found that the α-crystallin domain dimer resists high forces when pulled at its termini. In contrast to bulk denaturation, stable monomeric unfolding intermediates could be directly observed in the mechanical unfolding traces after the α-crystallin domain dimer had been dissociated by force. Our results imply that for this hyperthermophilic member of the small heat shock protein family, assembly of the spherical 24mer starts from folded monomers, which readily associate to the dimeric structure required for assembly of the higher oligomer.  相似文献   

9.
Holt JM  Klinger AL  Yarian CS  Keelara V  Ackers GK 《Biochemistry》2005,44(36):11925-11938
The complete binding cascade of human hemoglobin consists of eight partially ligated intermediates and 16 binding constants. Each intermediate binding constant can be evaluated via dimer-tetramer assembly when ligand configurations within the tetramer are fixed through the use of hemesite analogs. The Zn/Fe analog, in which the nonbinding Zn2+ heme substitutes for deoxy Fe2+ heme, also permits direct measurement of O2 binding to the remaining Fe2+ hemesites within the symmetrically ligated Hb tetramers. Measurement of O2 binding over a range of Zn/Fe Hb concentrations to both alpha-subunits (species 23) or to both beta-subunits (species 24) shows noncooperative binding and incomplete saturation of the available Fe2+ hemesites. In contrast, the asymmetrically ligated Zn/FeO2 species 21, in which both oxygens are bound to one of the dimers within the tetramer, exhibits positive cooperativity and >90% ligation under atmospheric conditions. These properties are confirmed in the present study by measurement of the rate constant for tetramer dissociation to free dimer. The binding constants thus derived for these partially ligated intermediates are consistent with the stoichiometric constants measured for native hemoglobin by standard O2 binding techniques, providing additional evidence that Zn2+-heme substitution provides an excellent deoxy hemoglobin analog. There is no evidence that Zn-substitution stabilizes a low-affinity form of the tetramer, as previously suggested. These characterizations demonstrate distinct, nonadditive physical properties of the doubly ligated tetrameric species, yielding an asymmetric distribution of cooperativity within the cascade of O2 binding by human hemoglobin.  相似文献   

10.
The effect of 2,3-diphospho-D-glycerate on the sedimentation coefficient of carbon monoxide hemoglobin was correlated with the fraction of rapidly reacting hemoglobin observed subsequent to flash photolysis at 23 degrees C at pH 7.30 in buffers of 0.1 M ionic strength. Concentrations of the organic phosphate up to about 5 mM resulted in an increase in S20,w, consistent with an increase in the fraction of tetrameric hemoglobin. A decrease in rapidly reacting hemoglobin parallelled the increase in the sedimentation coefficient. Between 5 and 20 mM 2,3-diphosphoglycerate, S20,w decreased, suggesting that dissociation to dimers was enhanced. An increase in rapidly reacting hemoglobin was also observed in this concentration range. Similar sedimentation results were obtained with oxyhemoglobin at pH 7.00 and carbon monoxide hemoglobin at pH 7.06. Assuming single binding sites on each species, the dissociation constants for 2,3-diphosphoglycerate binding to tetrameric and dimeric HbCO are 0.2-0.3 mM and 2-5 mM at pH 7.30. This biphasic effect of this physiologically important organic phosphate on the state of aggregation of R state hemoglobin has not been previously reported, but it is similar to that previously noted with inositol hexaphosphate, which enhanced tetramer formation at low concentrations, while at higher concentrations it promoted hemoglobin dissociation to dimers (White, S. L. (1976) J. Biol. Chem. 251, 4763-4769; Gray, R. D. (1980) J. Biol. Chem. 255, 1812-1818).  相似文献   

11.
The soluble form of dopamine beta-hydroxylase from bovine adrenal medulla has previously been shown to exist as a tetrameric species of Mr = 290,000 composed of two disulfide-linked dimers. Here we report that this enzyme can also undergo a reversible tetramerdimer dissociation which is dependent on pH. Gel permeation chromatography of dopamine beta-hydroxylase at pH 5.0 demonstrates a Stokes radius of 5.8 nm. When the pH is shifted to 5.7, the Stokes radius changes to 6.9 nm. Sedimentation equilibrium analysis of the purified enzyme demonstrates that this change in molecular size is due to a change in molecular weight. At low protein concentration, the estimated Mr of the enzyme is 145,000 at pH 5.0 and at high protein concentration approaches 290,000 at pH 5.7. This change in Mr is consistent with the existence of a tetramer-dimer dissociation and a change in the equilibrium constant from 1.8 X 10(-6) M to 1.16 X 10(-9) M when the pH is increased from 5.0 to 5.7. This pH-dependent subunit dissociation is correlated with pH-dependent changes in enzyme activity. Purified bovine-soluble dopamine beta-hydroxylase activity is a hyperbolic function of tyramine concentration at pH 5.0. However, the hydroxylase activity displays non-hyperbolic kinetics at pH 6.0. The kinetic data obtained at pH 6.0 can be accounted for by fitting to a model containing two nonidentical catalytic forms of enzyme generated by the pH-dependent partial dissociation of tetrameric enzyme to dimeric subunits. The two catalytic forms have apparently identical maximal velocities; however, they differ in their Michaelis constants for the substrate; the dimeric form having a low Km and the tetrameric form having a high Km. Since the pH inside bovine adrenal medullary chromaffin granules is approximately 5.5, we conclude that the subunits of dopamine beta-hydroxylase are in dynamic dissociation in a physiologically important pH range.  相似文献   

12.
McBryant SJ  Peersen OB 《Biochemistry》2004,43(32):10592-10599
The self-association properties of the yeast nucleosome assembly protein 1 (yNAP1) have been investigated using biochemical and biophysical methods. Protein cross-linking and calibrated gel filtration chromatography of yNAP1 indicate the protein exists as a complex mixture of species at physiologic ionic strength (75-150 mM). Sedimentation velocity reveals a distribution of species of 4.5-12 Svedbergs (S) over a 50-fold range of concentrations. The solution-state complexity is reduced at higher ionic strength, allowing for examination of the fundamental oligomer. Sedimentation equilibrium of a homogeneous 4.5 S population at 500 mM sodium chloride reveals these species to be yNAP1 dimers. These dimers self-associate to form higher order oligomers at more moderate ionic strength. Titration of guanidine hydrochloride converts the higher order oligomers to the homogeneous 4.5 S dimer and then converts the 4.5 S dimers to 2.5 S monomers. Circular dichroism shows that guanidine-mediated dissociation of higher order oligomers into yNAP1 dimers is accompanied by only slight changes in secondary structure. Dissociation of the dimer requires a nearly complete denaturation event.  相似文献   

13.
FtsZ is a major protein in bacterial cytokinesis that polymerizes into single filaments. A dimer has been proposed to be the nucleating species in FtsZ polymerization. To investigate the influence of the self-assembly of FtsZ on its unfolding pathway, we characterized its oligomerization and unfolding thermodynamics. We studied the assembly using size-exclusion chromatography and fluorescence spectroscopy, and the unfolding using circular dichroism and two-photon fluorescence correlation spectroscopy. The chromatographic analysis demonstrated the presence of monomers, dimers, and tetramers with populations dependent on protein concentration. Dilution experiments using fluorescent conjugates revealed dimer-to-monomer and tetramer-to-dimer dissociation constants in the micromolar range. Measurements of fluorescence lifetimes and rotational correlation times of the conjugates supported the presence of tetramers at high protein concentrations and monomers at low protein concentrations. The unfolding study demonstrated that the three-state unfolding of FtsZ was due to the mainly dimeric state of the protein, and that the monomer unfolds through a two-state mechanism. The monomer-to-dimer equilibrium characterized here (K(d) = 9 μM) indicates a significant fraction (~10%) of stable dimers at the critical concentration for polymerization, supporting a role of the dimeric species in the first steps of FtsZ polymerization.  相似文献   

14.
Gene 8 protein was isolated in a highly aggregated form in aqueous solution from purified fd bacteriophage. Gene 8 protein was dissociated to a stable dimeric form in the presence of 10 mm-sodium deoxycholate. The dimer obtained in the presence of the detergent was stable to further dissociation by sodium dodecyl sulfate, and was estimated to have a 51% helical content on the basis of circular dichroism data. When the deoxycholate was removed, the dimers were observed by electron microscopy to self-associate to complex string-like structures. The dimer obtained is thought to be a result of one of the interactions between adjacent monomers in the model proposed by Marvin & Wachtel (1975).  相似文献   

15.
Site-directed mutagenesis of an important subunit contact site, Asp-99(beta), by a Lys residue (D99K(beta)) was proven by sequencing the entire beta-globin gene and the mutant tryptic peptide. Oxygen equilibrium curves of the mutant hemoglobin (Hb) (2-15 mM in heme) indicated that it had an increased oxygen affinity and a lowered but significant amount of cooperativity compared to native HbA. However, in contrast to normal HbA, oxygen binding of the recombinant mutant Hb was only marginally affected by the allosteric regulators 2,3-diphosphoglycerate or inositol hexaphosphate and was not at all responsive to chloride. The efficiency of oxygen binding by HbA in the presence of allosteric regulators was limited by the mutant Hb. At concentrations of 0.2 mM or lower in heme, the mutant D99K(beta) Hb was predominantly a dimer as demonstrated by gel filtration, haptoglobin binding, fluorescence quenching, and light scattering. The purified dimeric recombinant Hb mutant exists in 2 forms that are separable on isoelectric focusing by about 0.1 pH unit, in contrast to tetrameric hemoglobin, which shows 1 band. These mutant forms, which were present in a ratio of 60:40, had the same masses for their heme and globin moieties as determined by mass spectrometry. The elution positions of the alpha- and beta-globin subunits on HPLC were identical. Circular dichroism studies showed that one form of the mutant Hb had a negative ellipticity at 410 nm and the other had positive ellipticity at this wavelength. The findings suggest that the 2 D99K(beta) recombinant mutant forms have differences in their heme-protein environments.  相似文献   

16.
D D Haas  B R Ware 《Biochemistry》1978,17(23):4946-4950
Diffusion studies by photon correlation of scattered laser light confirm the dissociation of the tetrameric form of human carboxyhemoglobin to dimers above pH 10 and provide new estimates of the subunit dissociation equilibrium constants in this pH range. Electrophoretic light-scattering experiments under the same conditions reveal that the electrophoretic mobilities of tetramers and dimers are indistinguishable to within instrumental resolution (ca. 7% in these experiments). The data imply an increase of the electrical charge on the dimer of at least 2.8 to 4.4 net negative charges upon dissociation. Mechanisms for the accumulation of negative charge by the dimer upon dissociation of the tetramer are proposed.  相似文献   

17.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   

18.
Diaspirin crosslinked hemoglobin (DCLHb) was analyzed by mass spectrometric-based techniques to identify the protein modifications effected by the crosslinking reaction with bis(3,5-dibromosalicyl) fumarate. DCLHb consists of two principal components. These components were isolated by size-exclusion chromatography and identified by measurement of their molecular weight using electrospray mass spectrometry and subsequent peptide mass mapping and mass spectrometric sequence analysis of their individual digests. Three major RP-HPLC fractions were observed from the major hemoglobin in DCLHb. Their MWs matched the MW of heme, intact hemoglobin beta-chain, and two hemoglobin alpha-chains crosslinked by a fumarate moiety, respectively. The minor HPLC peaks of DCLHb were also separated, and characterized by mass spectrometric methods. These minor components revealed additional details of the structural nature of covalent modification of DCLHb.  相似文献   

19.
For many protein multimers, association and dissociation reactions fail to reach the same end point; there is hysteresis preventing one and/or the other reaction from equilibrating. We have studied in vitro assembly of dimeric hepatitis B virus (HBV) capsid protein and dissociation of the resulting T = 4 icosahedral capsids. Empty HBV capsids composed of 120 capsid protein dimers were more resistant to dissociation by dilution or denaturants than anticipated from assembly experiments. Using intrinsic fluorescence, circular dichroism, and size exclusion chromatography, we showed that denaturants dissociate the HBV capsids without unfolding the capsid protein; unfolding of dimer only occurred at higher denaturant concentrations. The apparent energy of interaction between dimers measured in dissociation experiments was much stronger than when measured in assembly studies. Unlike assembly, capsid dissociation did not have the concentration dependence expected for a 120-subunit complex; consequently the apparent association energy systematically varied with reactant concentration. These data are evidence of hysteresis for HBV capsid dissociation. Simulations of capsid assembly and dissociation reactions recapitulate and provide an explanation for the observed behavior; these results are also applicable to oligomeric and multidomain proteins. In our calculations, we find that dissociation is impeded by temporally elevated concentrations of intermediates; this has the paradoxical effect of favoring re-assembly of those intermediates despite the global trend toward dissociation. Hysteresis masks all but the most dramatic decreases in contact energy. In contrast, assembly reactions rapidly approach equilibrium. These results provide the first rigorous explanation of how virus capsids can remain intact under extreme conditions but are still capable of "breathing." A biological implication of enhanced stability is that a triggering event may be required to initiate virus uncoating.  相似文献   

20.
The Bacillus subtilis catabolite repression HPr (Crh) exhibits 45% sequence identity when compared to histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system. We report here that Crh preparations contain a mixture of monomers and homodimers, whereas HPr is known to be monomeric in solution. The dissociation rate of dimers is very slow (t1/2 of about 10 hours), and the percentage of dimers in Crh preparations increases with rising temperature or protein concentration. However, at temperatures above 25 degrees C and a protein concentration of 10 mg/ml, Crh dimers slowly aggregate. Typically, NMR spectra recorded at 25 degrees C showed the coexistence of both forms of Crh, while in Crh solutions kept at 35 degrees C, almost exclusively Crh monomers could be detected. Circular dichroism analysis revealed that the monomeric and dimeric forms of Crh are well folded and exhibit the same overall structure. The physiological significance of the slow Crh monomer/dimer equilibrium remains enigmatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号