首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Bkm (Banded krait minor) satellite DNA sequences (GATA repeats) have been shown to be associated with the sex determining chromosomes of various eukaryotes and have been implicated in the evolution and differentiation of sex chromosomes in snakes. The objective of the study is to analyze the GATA repeats of human genome specifically, the Y-chromosome, and other model organisms to understand the possible function and potential role in higher order chromatin organization. RESULTS: Our extensive analysis of GATA repeats in the prokaryotic and eukaryotic genomes, which have been completely sequenced so far, has revealed that GATA repeats are absent in prokaryotes and have been gradually accumulated in higher organisms during the course of evolution. In human, the Y-chromosome has the highest GATA repeat density, which predominantly exists in the Yq centromeric region. Generally, occurrence of repeats in the genomes decreases steadily as the length of the repeat increases. In contrast, we report, that the occurrence of GATA repeats increases as the length of the repeat increases from six tandem repeats onwards and peaks at (GATA)(10-12). This has not been observed with any other simple repeat. Distribution of (GATA)(10-12) along the chromosome and their close proximity to Matrix Associated Regions (GATA-MAR) suggests that it may be demarking chromatin domains for a coordinated expression of genes residing in these domains.  相似文献   

2.
Nine rare (biallelic) mutations and six short tandem repeats (STR) mapping to the nonrecombining portion of the Y chromosome were genotyped in 734 males from different geographical regions inhabited by the contemporary Armenian population. The analysis of molecular variance (AMOVA) showed that 48.9% of total STR genetic variation was explained by the differences between the haplogroups isolated based on biallelic polymorphism, whereas only 1.3% of genetic variation could be attributed to the differences between the geographic groups.  相似文献   

3.
The distribution of the 2000 copies of the Y-specific repetitive family DYZ2 is controversial since previous reports have mapped these sequences to different sites of the Yqh region. In this work, we have performed non-radioactive in situ hybridization of a cloned DYZ2 fragment at higher stringency conditions on 5-aza-cytidine-enlarged Y chromosomes; the results suggest a non-uniform distribution of these sequences, which are preferentially located at the proximal and distal parts of Yqh, including the C+/Q-heterochromatin at the boundary with the euchromatic region.  相似文献   

4.
Human retroviral sequences on the Y chromosome.   总被引:1,自引:0,他引:1       下载免费PDF全文
Novel endogenous human retroviral sequences were cloned by low-stringency hybridization, using the pol gene of endogenous human retrovirus 51-1. One clone, lambda NP-2, contained gag, pol, env, and long terminal repeat sequences related to the corresponding portions of clone 51-1 and the closely related full-length endogenous human retrovirus 4-1. The sequence of the env gene of NP-2 was 73% homologous to that of 4-1. Genomic Southern blots of male and female DNAs showed that NP-2 is located on the Y chromosome and that the Y chromosome also contains one other sequence closely related to the env and 3' flanking regions of NP-2. Conservation of flanking DNA suggests that the second Y chromosome copy of the NP-2 env sequence arose by gene duplication rather than provirus insertion.  相似文献   

5.
6.
Eleven biallelic polymorphisms and seven short-tandem-repeat (STR) loci mapping on the nonrecombining portion of the human Y chromosome have been typed in men from northwestern Africa. Analysis of the biallelic markers, which represent probable unique events in human evolution, allowed us to characterize the stable backgrounds or haplogroups of Y chromosomes that prevail in this geographic region. Variation in the more rapidly mutating genetic markers (STRs) has been used both to estimate the time to the most recent common ancestor for STR variability within these stable backgrounds and to explore whether STR differentiation among haplogroups still retains information about their phylogeny. When analysis of molecular variance was used to study the apportionment of STR variation among both genetic backgrounds (i.e., those defined by haplogroups) and population backgrounds, we found STR variability to be clearly structured by haplogroups. More than 80% of the genetic variance was found among haplogroups, whereas only 3.72% of the genetic variation could be attributed to differences among populations-that is, genetic variability appears to be much more structured by lineage than by population. This was confirmed when two population samples from the Iberian Peninsula were added to the analysis. The deep structure of the genetic variation in old genealogical units (haplogroups) challenges a population-based perspective in the comprehension of human genome diversity. A population may be better understood as an association of lineages from a deep and population-independent gene genealogy, rather than as a complete evolutionary unit.  相似文献   

7.
Chromosome behaviour during meiosis in male Syrian hamsters heterozygous for one of three translocations was analysed as part of a study of the transmission of these structural changes. Synapsis was studied using preparations of synaptonemal complexes, and chiasmate associations and the results of anaphase I segregation were studied in air-dried preparations of metaphases I and II respectively. The main findings were: (i) that, at least in the two trivalent-forming translocations, there is no simple relationship between either the frequency or the extent of synapsis and chiasma formation between the chromosomes involved in the translocation; (ii) that the presence of a univalent in a substantial proportion of metaphase I cells does not necessarily lead to irregular segregation as judged by analysis of metaphase IIs; and (iii) conversely, that in translocation heterozyotes in which metaphase I contains the chromosomes involved in the translocation as a quadrivalent or as two bivalents, with no univalents or trivalents, unexpected numerical segregation can be found. The observations of meiotic chromosomes behaviour reported here show that it is not always possible to predict the effects of structural change, or to determine the basis of these effects, from an analysis of any stage of meiosis taken in isolation, or from an analysis of an apparently similar change.  相似文献   

8.
The mouse Y chromosome remains highly condensed in all somatic tissues but decondenses extensively in testis. We have isolated a mouse Y chromosome-specific repeat M34 (11.5 kb) and shown that this is distributed along the Y chromosome except the sex-determining region (the Y short arm) in which GATA repeats are predominantly concentrated. It has 32 copies of GATA repeats in a 2.7 kb fragment. About 200-300 copies of M34 on the Y chromosome are interspersed among other sequences. A 1.2 kb fragment (p3) of M34, containing GATA repeats, also has scaffold attachment region (SAR) motifs which bind to nuclear matrices. A strong affinity of histone H1 to SAR motifs is implicated in maintaining the condensed state of the Y chromosome in somatic tissues. The probable significance of molecular organization of the Y chromosome is discussed.  相似文献   

9.
A 500 bp fragment of Drosophila genomic DNA containing 37 copies of the tetranucleotide GATA was used to probe, by Southern DNA blotting and in situ hybridization, two natural populations of the isopod crustacean Asellus aquaticus collected from the Sarno and Tiber rivers. This species does not have a recognizable sex chromosome pair. In a number of males from the Sarno population chromomycin A3 staining reveals a heteromorphic chromosome pair. The heterochromosome has two blocks of heterochromatin. After digestion of genomic DNA with six restriction endonucleases and hybridization with the GATA probe, the two populations exhibit different fragment length patterns. No sex-linked pattern was observed in either population. In situ hybridization to chromosomes of males and females from the Sarno population does not reveal any sex-specific pattern of labelling and indicates a scattered distribution of GATA sequences on most chromosomes with some areas of preferential concentration. The heterochromatic arcas of the male heterochromosome are not labelled.by E.R. Schmidt  相似文献   

10.
11.
Mapping the human Y chromosome   总被引:1,自引:0,他引:1  
This paper reviews past and present trends in mapping the human Y chromosome. So far, mapping has essentially used a combination of cytogenetic and molecular analyses of Y-chromosomal anomalies and sex reversal syndromes. This deletion mapping culminated recently in the isolation of the putative sex-determining locus TDF. With the availability of new separation and cloning techniques suited for large size fragments (over 100 kilobases), the next step will consist rather in the establishment of a physical map of fragments of known physical sizes. This may allow the definition of several variants of the human Y chromosome differing by the order or location of DNA sequences along the molecule.  相似文献   

12.
13.
Clinical consequences of a human non-fluorescent Y chromosome (Ynf)   总被引:1,自引:0,他引:1  
A new case of ambiguous genitalia and immature tissue in the left gonad is presented. Cytogenetic findings with various techniques demonstrated that the distal two-thirds of the long arm of the Y chromosome is deleted. Q-banding showed a non-fluorescent Y; three positive bands were however noted when the DA/DAPI technique was applied. After a review of the literature, it was concluded that the non-fluorescent Y chromosome (Ynf) when inherited from generation to generation is a heteromorphism in normal males. However, in our case, where the proband's Y is lacking the fluorescent segment, a simple deletion does not appear to adequately explain the DA/DAPI positive bands. Possibly, a deletion followed by a structural rearrangement of the non-fluorescent segment had occurred de novo. The highly Y-specific DNA sequences present in the fluorescent segment are absent in these patients. The abnormal development in these cases is due to the presence of the 45,X cell line. The gene responsible for spermatogenesis has been localized to the non-fluorescent region in the long arm of the Y chromosome. Furthermore, it is concluded that two types of non-fluorescent Y chromosomes can be found in the population; one is a normal inherent heteromorphic variant, while the other appears to be an abnormality, especially in cases with azoospermia. Such distinctions should clearly be established prior to genetic counseling for patients with so called Ynf or del (Yd).  相似文献   

14.
Y chromosome haplotyping based on microsatellites or single nucleotide polymorphisms has recently proven to be a powerful approach for evolutionary studies of human populations, and also holds great promise for the studies of wild species. However, the use of the approach is hampered in most natural populations by the lack of Y chromosome markers and sequence information. Here, we report the large-scale development of Y chromosome conserved anchor tagged sequence (YCATS) markers in mammals by a polymerase chain reaction screening approach. Exonic primers flanking 48 different introns of Y-linked genes were developed based on human and mouse sequences, and screened on a set of 20 different mammals. On average about 10 introns were amplified for each species and a total of 100 kb of Y chromosome sequence were obtained. Intron size in humans was a reasonable predictor of intron size in other mammals (r2 = 0.45) and there was a negative correlation between human fragment size and amplification success. We discuss a number of factors affecting the possibility of developing conserved Y chromosome markers, including fast evolution of Y chromosome sequences due to male-biased mutation and adaptive evolution of male-specific genes, dynamic evolution of the Y chromosome due to being a nonrecombining unit, and homology with X chromosome sequences.  相似文献   

15.
16.
The long arm of the human Y chromosome is flecked with various fractions of repetitive DNA. DYZ1 is one such fraction, which is organized tandemly as an array of a 3.4-kb repeat ranging from 2000-4000 copies in normal males. We have studied the organizational variation of the DYZ1 fraction on the human Y chromosome using DNA samples from CEPH family members and the random population employing the RFLP approach, fluorescence in situ hybridization (FISH), and conducted a similarity search with GenBank sequences. Typing of genomic DNA using DYZ1 as a probe showed an allele length and copy number variations even between two male siblings. Hybridization of DNA from monochromosome hybrids with this probe showed its presence on chromosome 15 in addition to the Y chromosome. Fluorescence in situ hybridization of metaphase chromosomes from an apparently normal male showed DYZ1 sequences in the proximal region of chromosome 11 in addition to the long arm of the Y chromosome. Typing of sets of semen and blood DNA samples from the same human individuals showed discernible allelic variation between the two samples, indicating tissue-specific programmed sequence modulation. DYZ1 seems to be the first probe having the unique potential to discriminate unequivocally the difference between the DNA originating from semen and blood samples, and may be exploited in forensic cases. This probe may also be used as a diagnostic tool to ascertain Y chromosome mosaicism in patients (e.g., Turner), its aberrant status in somatic cells, and possible sequence modulation/rearrangement in the germline samples. Additionally, this can be used to uncover sequence polymorphism in the human population.  相似文献   

17.
Two DNA sequences specific for the canine Y chromosome   总被引:1,自引:0,他引:1  
Data are presented on the characterization of two nucleotide sequences found exclusively in the DNA of male dogs. In polymerase chain reactions (PCRs) of canine genomic DNA with a decanucleotide primer of arbitrary sequence (OP-W17), two nucleotide segments (650 and 990 bp) were amplified only from male samples, whereas a number of other fragments between 400 and 2500 bp in size were amplified from both male and female samples. The two male-specific segments were cloned and sequenced, and terminal 24mer oligonucleotide primer pairs were synthesized. PCR with these specific primer pairs resulted in amplification of the two male-specific sequences only from DNA samples of 34 male dogs; no product was amplified from 42 samples of females. A segment of the SRY gene previously localized on the Y chromosome could be amplified in DNA samples that had the two new sequences. Eco RI digested genomic male DNA when hybridized with the 650 bp or the 990 bp sequences, resulted in a single band for each on Southern analysis; DNA from females did not yield any bands. Comparisons between the two new sequences and the SRY gene segment revealed no homologies. We concluded that the two new sequences are specific for the canine Y chromosome and do not contain the short characterized segment of the SRY gene.  相似文献   

18.
The recent availability of large-scale sequence data for the human Y chromosome has revolutionized analyses of and insights gained from this non-recombining, paternally inherited chromosome. However, the studies to date focus on Eurasian variation, and hence the diversity of early-diverging branches found in Africa has not been adequately documented. Here, we analyze over 900 kb of Y chromosome sequence obtained from 547 individuals from southern African Khoisan- and Bantu-speaking populations, identifying 232 new sequences from basal haplogroups A and B. We identify new clades in the phylogeny, an older age for the root, and substantially older ages for some individual haplogroups. Furthermore, while haplogroup B2a is traditionally associated with the spread of Bantu speakers, we find that it probably also existed in Khoisan groups before the arrival of Bantu speakers. Finally, there is pronounced variation in branch length between major haplogroups; in particular, haplogroups associated with Bantu speakers have significantly longer branches. Technical artifacts cannot explain this branch length variation, which instead likely reflects aspects of the demographic history of Bantu speakers, such as recent population expansion and an older average paternal age. The influence of demographic factors on branch length variation has broader implications both for the human Y phylogeny and for similar analyses of other species.  相似文献   

19.
【目的】考察炭疽芽胞杆菌中规律成簇的间隔短回文序列(Clustered regularly interspaced short palindromic repeats,CRISPR)位点多态性情况及基于CRISPR位点多态性的分子分型方法是否在炭疽芽胞杆菌分型中适用。【方法】下载NCBI数据库中6株炭疽芽胞杆菌基因组并截取其中CRISPR位点片段序列。根据炭疽芽胞杆菌内CRISPR位点信息,设计相关引物,以193株炭疽芽胞杆菌基因组为模板PCR扩增CRISPR位点片段,测序。本地Blast比对截取序列及测序结果,查看CRISPR位点在炭疽芽胞杆菌中的多态性情况,并比较炭疽芽胞杆菌与蜡样芽胞杆菌和苏云金芽胞杆菌内CRISPR位点情况。【结果】炭疽芽胞杆菌内CRISPR位点不存在多态性。【结论】基于CRISPR位点多态性的分子分型方法不适用于炭疽芽胞杆菌分型,但可以用于区分炭疽芽胞杆菌与蜡样芽胞杆菌和苏云金芽胞杆菌。  相似文献   

20.
Nine newly described single-copy and lowcopy-number genomic DNA sequences isolated from a flow-sorted human Y chromosome library were mapped to regions of the human Y chromosome and were hybridized to Southern blots of male and female great ape genomic DNAs (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). Eight of the nine sequences mapped to the euchromatic Y long arm (Yq) in humans, and the ninth mapped to the short arm or pericentromeric region. All nine of the newly identified sequences and two additional human Yq sequences hybridized to restriction fragments in male but not female genomic DNA from the great apes, indicating Y chromosome localization. Seven of these 11 human Yq sequences hybridized to similarly-sized restriction endonuclease fragments in all the great ape species analyzed. The five human sequences that mapped to the most distal subregion of Yq (deletion of which region is associated with spermatogenic failure in humans) were hybridized to Southern blots generated by pulsed-field gel electrophoresis. These sequences define a region of approximately 1 Mb on human Yq in which HpaII tiny fragment (HTF) islands appear to be absent. The conservation of these human Yq sequences on great ape Y chromosomes indicates a greater stability in this region of the Y than has been previously described for most anonymous human Y chromosomal sequences. The stability of these sequences on great ape Y chromosomes seems remarkable given that this region of the Y does not undergo meiotic recombination and the sequences do not appear to encode genes for which positive selection might occur. Correspondence to: B. Steele Allen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号