共查询到20条相似文献,搜索用时 15 毫秒
1.
Henry H. Yin 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1637)
The ability to control the speed of movement is compromised in neurological disorders involving the basal ganglia, a set of subcortical cerebral nuclei that receive prominent dopaminergic projections from the midbrain. For example, bradykinesia, slowness of movement, is a major symptom of Parkinson''s disease, whereas rapid tics are observed in patients with Tourette syndrome. Recent experimental work has also implicated dopamine (DA) and the basal ganglia in action timing. Here, I advance the hypothesis that the basal ganglia control the rate of change in kinaesthetic perceptual variables. In particular, the sensorimotor cortico-basal ganglia network implements a feedback circuit for the control of movement velocity. By modulating activity in this network, DA can change the gain of velocity reference signals. The lack of DA thus reduces the output of the velocity control system which specifies the rate of change in body configurations, slowing the transition from one body configuration to another. 相似文献
2.
The mechanism underlying somatodendritic release of dopamine (DA) appears to differ from that of axon-terminal release. Specifically, somatodendritic DA release in the substantia nigra pars compacta (SNc) persists in low extracellular Ca2+ concentrations that are insufficient to support axonal release in striatum, suggesting that limited Ca2+ entry is necessary to trigger somatodendritic release. Here, we compared the role of voltage-dependent Ca2+ channels in mediating DA release in striatum versus SNc using specific blockers of N-, P/Q-, T-, R- and L-type Ca2+ channels individually and in combination. Release of DA evoked by a single stimulus pulse in the dorsal striatum and SNc of guinea-pig brain slices was monitored in real time using carbon-fiber microelectrodes with fast-scan cyclic voltammetry. Single-pulse evoked DA release was shown to be independent of regulation by concurrently released glutamate or GABA acting at ionotropic receptors in both regions. Under these conditions, striatal DA release was completely prevented by an N-type channel blocker, omega-conotoxin GVIA (100 nm), and was decreased by 75% by the P/Q-type channel blocker omega-agatoxin IVA (200 nm). Blockade of T-type channels with Ni2+ (100 microm) or R-type channels with SNX-482 (100 nm) decreased axonal release in striatum by 25%, whereas inhibition of L-type channels with nifedipine (20 microm) had no effect. By contrast, none of these Ca2+-channel blockers altered the amplitude of somatodendritic DA release in the SNc. Even a cocktail of all blockers tested did not alter release-signal amplitude in the SNc, although the duration of the release response was curtailed. The limited involvement of voltage-dependent Ca2+ channels in somatodendritic DA release provides further evidence that minimal Ca2+ entry is required to trigger the release process, compared with that required for axon-terminal release. 相似文献
3.
Meissner K 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1572):1808-1817
For many subjectively experienced outcomes, such as pain and depression, rather large placebo effects have been reported. However, there is increasing evidence that placebo interventions also affect end-organ functions regulated by the autonomic nervous system (ANS). After discussing three psychological models for autonomic placebo effects, this article provides an anatomical framework of the autonomic system and then critically reviews the relevant placebo studies in the field, thereby focusing on gastrointestinal, cardiovascular and pulmonary functions. The findings indicate that several autonomic organ functions can indeed be altered by verbal suggestions delivered during placebo and nocebo interventions. In addition, three experimental studies provide evidence for organ-specific effects, in agreement with the current knowledge on the central control of the ANS. It is suggested that the placebo effects on autonomic organ functions are best explained by the model of 'implicit affordance', which assumes that placebo effects are dependent on 'lived experience' rather than on the conscious representation of expected outcomes. Nevertheless, more studies will be needed to further elucidate psychological and neurobiological pathways involved in autonomic placebo effects. 相似文献
4.
Mental states such as stress and anxiety can cause heart disease.On the other hand,meditation can improve cardiac performance.In this study,the heart rate variability,directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance,and the functional coupling between the cerebral cortex and the heart.When subjects tried to decrease their heart rate by volition,the sympathetic nervous system was inhibited and the heart rate decreased.When subjects tried to increase their heart rate by volition,the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated,and the heart rate increased.When autonomic nervous system activity was regulated by mental tasks,the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased,and there was greater coupling between the brain and the heart.Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings,and of the information flow causing functional coupling between the brain and the heart. 相似文献
5.
Gregg D. Stanwood† Duncan B. Leitch‡§ Valentina Savchenko¶ Jane Wu¶ Vanessa A. Fitsanakis Douglas J. Anderson Jeannette N. Stankowski‡ Michael Aschner† BethAnn McLaughlin†§ 《Journal of neurochemistry》2009,110(1):378-389
Manganese is an essential nutrient, integral to proper metabolism of amino acids, proteins and lipids. Excessive environmental exposure to manganese can produce extrapyramidal symptoms similar to those observed in Parkinson's disease (PD). We used in vivo and in vitro models to examine cellular and circuitry alterations induced by manganese exposure. Primary mesencephalic cultures were treated with 10–800 μM manganese chloride which resulted in dramatic changes in the neuronal cytoskeleton even at subtoxic concentrations. Using cultures from mice with red fluorescent protein driven by the tyrosine hydroxylase (TH) promoter, we found that dopaminergic neurons were more susceptible to manganese toxicity. To understand the vulnerability of dopaminergic cells to chronic manganese exposure, mice were given i.p. injections of MnCl2 for 30 days. We observed a 20% reduction in TH-positive neurons in the substantia nigra pars compacta (SNpc) following manganese treatment. Quantification of Nissl bodies revealed a widespread reduction in SNpc cell numbers. Other areas of the basal ganglia were also altered by manganese as evidenced by the loss of glutamic acid decarboxylase 67 in the striatum. These studies suggest that acute manganese exposure induces cytoskeletal dysfunction prior to degeneration and that chronic manganese exposure results in neurochemical dysfunction with overlapping features to PD. 相似文献
6.
Daiji Kagawa Mayumi Ohtsuka Takatoshi Murase 《Bioscience, biotechnology, and biochemistry》2018,82(5):879-884
The aim of this study was to evaluate the effect of consumption of coffee polyphenols (CPPs) on the autonomic nervous system activity and decreased skin barrier function caused by sodium dodecyl sulfate (SDS) treatment. In this single-blind, placebo-controlled study, ten healthy male subjects consumed either a beverage containing CPPs or a placebo beverage for four weeks. CPPs significantly suppressed the deterioration in skin barrier function and skin moisture content induced by SDS treatment after the third week. Furthermore, in the heart rate variability analysis, CPPs significantly produced an increase in parasympathetic nervous activity, and a decrease in sympathetic nervous activity after the four weeks of beverage consumption. These results suggest that CPPs might influence the regulation of the autonomic nervous system and contribute to the suppressive effect on deterioration of skin barrier function. 相似文献
7.
Chu NS 《Journal of biomedical science》2001,8(3):229-236
Betel chewing has been claimed to produce a sense of well-being, euphoria, heightened alertness, sweating, salivation, a hot sensation in the body and increased capacity to work. Betel chewing also leads to habituation, addiction and withdrawal. However, the mechanisms underlying these effects remain poorly understood. Arecoline, the major alkaloid of Areca nut, has been extensively studied, and several effects of betel chewing are thought to be related to the actions of this parasympathomimetic constituent. However, betel chewing may produce complex reactions and interactions. In the presence of lime, arecoline and guvacoline in Areca nut are hydrolyzed into arecaidine and guvacine, respectively, which are strong inhibitors of GABA uptake. Piper betle flower or leaf contains aromatic phenolic compounds which have been found to stimulate the release of catecholamines in vitro. Thus, betel chewing may affect parasympathetic, GABAnergic and sympathetic functions. Betel chewing produces an increase in heart rate, blood pressure, sweating and body temperature. In addition, EEG shows widespread cortical desynchronization indicating a state of arousal. In autonomic function tests, both the sympathetic skin response and RR interval variation are affected. Betel chewing also increases plasma concentrations of norepinephrine and epinephrine. These results suggest that betel chewing mainly affects the central and autonomic nervous systems. Future studies should investigate both the acute and chronic effects of betel chewing. Such studies may further elucidate the psychoactive mechanisms responsible for the undiminished popularity of betel chewing since antiquity. 相似文献
8.
Immunohistochemical mapping of galanin-like neurons in the rat central nervous system 总被引:31,自引:0,他引:31
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role. 相似文献
9.
Nikolaus R. McFarland Jeng-Shin Lee† Bradley T. Hyman Pamela J. McLean 《Journal of neurochemistry》2009,109(3):838-845
Enhanced delivery and expression of genes in specific neuronal systems is critical for the development of genetic models of neurodegenerative disease and potential gene therapy. Recent discovery of new recombinant adeno-associated viral (rAAV) capsid serotypes has resulted in improved transduction efficiency, but expression levels, spread of transgene, and potential toxicity can differ depending on brain region and among species. We compared the transduction efficiency of titer-matched rAAV 2/1, 2/5, and 2/8 to the commonly used rAAV2/2 in the rat nigrostriatal system via expression of the reporter transgene, enhanced green fluorescent protein. Newer rAAV serotypes 2/1, 2/5, and 2/8 demonstrated marked increase in transduction and spread of enhanced green fluorescent protein expression in dopaminergic nigrostriatal neurons and projections to the striatum and globus pallidus compared to rAAV2/2 at 2 weeks post-injection. The number of nigral cells transduced was greatest for rAAV2/1, but for serotypes 2/5 and 2/8 was still two- to threefold higher than that for 2/2. Enhanced transduction did not cause an increase in glial cell response or toxicity. New rAAV serotypes thus promise improved gene delivery to nigrostriatal system with the potential for better models and therapeutics for Parkinson disease and other neurodegenerative disorders. 相似文献
10.
Calcitonin gene-related peptide: detailed immunohistochemical distribution in the central nervous system 总被引:9,自引:1,他引:9
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord. 相似文献
11.
Lauren E. McElvain Yuncong Chen Jeffrey D. Moore G. Stefano Brigidi Brenda L. Bloodgood Byung Kook Lim Rui M. Costa David Kleinfeld 《Neuron》2021,109(10):1721-1738.e4
- Download : Download high-res image (235KB)
- Download : Download full-size image
12.
George E. Billman D. Thomas Dickey H. Lowell Stone 《American journal of primatology》1982,2(2):159-166
The purpose of this study was to describe the autonomic innervation of the carotid sinus and heart in the rhesus monkey. Nine male rhesus monkeys (Macaca mulatta) and one male crab-eating macaque (M. fascicularis) were carefully dissected from the origin of the vagus nerves and superior cervical ganglia to the level of the fourth thoracic ganglion. The specimens were either freshly killed or obtained no later than 24 hours post mortem. The macaque monkeys were found to possess an innervation pattern that displayed features common to dog (connections between the vagus nerves and middle cervical ganglia), baboon (distinct cervical sympathetic and cervical vagal nerve trunks), and man (nerves projecting from the middle cervical and stellate ganglia to the heart). Distinct inferior cervical and first thoracic ganglia were never seen, but rather, large and well defined stellate ganglia were found. The macaque innervation pattern, when considered as a whole, most closely resembled the baboon. 相似文献
13.
14.
E. A. Kotikova 《Hydrobiologia》1986,132(1):89-92
Initial stages of the centralization of the nervous apparatus in the Turbellaria can be traced through a comparison of the structure of the nervous system in various representatives of the class. The most primitive state, found in the Acoela, is predominantly plexiform with a varying number of longitudinal trunks. Three, and in some cases four, longitudinal trunks are found in the Proseriata and Temnocephalida. Commissures appear in the Macrostomida and all higher orders and form an orthogon. Brain shape varies from ring-shaped in the Acoela to bilobed in the Neorhabdocoela. While the nervous system of the Polycladida is peculiar, having numerous lateral trunks and separation of dorsal and ventral parts of the nervous system, the development of the nervous system in Müller's larvae of polyclads shows it is of an orthogonal type comparable to other platyhelminths. Transition to parasitism is accompanied by some progressive transformations in the structure of the nervous system. 相似文献
15.
Jungo Kato Yoshiki Takai Mariko Kato Hayashi Yasuhiro Kato Manami Tanaka Yoshiro Sohma Yoichiro Abe Masato Yasui 《Biochemical and biophysical research communications》2014
Aquaporin-4 (AQP4) is a water channel protein that is predominantly expressed in astrocytes in the CNS. The rapid water flux through AQP4 may contribute to electrolyte/water homeostasis and may support neuronal activities in the CNS. On the other hand, little is known about the expression of AQP4 in the peripheral nervous system (PNS). Using AQP4−/− mice as a negative control, we demonstrated that AQP4 is also expressed in sensory ganglia, such as trigeminal ganglia and dorsal root ganglia in the PNS. Immunohistochemistry revealed that AQP4 is exclusively localized to satellite glial cells (SGCs) surrounding the cell bodies of the primary afferent sensory neurons in the sensory ganglia. Biochemical analyses revealed that the expression levels of AQP4 in sensory ganglia were considerably lower than those in astrocytes in the CNS. Consistently, behavioral analyses did not show any significant difference in terms of mechanical and cold sensitivity between wild type and AQP4−/− mice. Overall, although the pathophysiological relevance of AQP4 in somatosensory perception remains unclear, our findings provide new insight into the involvement of water homeostasis in the peripheral sensory system. 相似文献
16.
Hazy TE Frank MJ O'reilly RC 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2007,362(1485):1601-1613
The prefrontal cortex (PFC) has long been thought to serve as an 'executive' that controls the selection of actions and cognitive functions more generally. However, the mechanistic basis of this executive function has not been clearly specified often amounting to a homunculus. This paper reviews recent attempts to deconstruct this homunculus by elucidating the precise computational and neural mechanisms underlying the executive functions of the PFC. The overall approach builds upon existing mechanistic models of the basal ganglia (BG) and frontal systems known to play a critical role in motor control and action selection, where the BG provide a 'Go' versus 'NoGo' modulation of frontal action representations. In our model, the BG modulate working memory representations in prefrontal areas to support more abstract executive functions. We have developed a computational model of this system that is capable of developing human-like performance on working memory and executive control tasks through trial-and-error learning. This learning is based on reinforcement learning mechanisms associated with the midbrain dopaminergic system and its activation via the BG and amygdala. Finally, we briefly describe various empirical tests of this framework. 相似文献
17.
The presence of galanin was examined in the cat gut and related autonomic nervous structures using radioimmunoassay (RIA) and high performance liquid chromatography (HPLC). In the gut wall, the concentration of galanin-like immunoreactivity (GAL-LI) was assayed separately in the muscular layers with the nervous plexuses and in the mucosa and ranged from 0.35 to 0.55 pmol/g wet tissue. In the autonomic nervous structures, GAL-LI concentrations ranged from 0.22 (thoracic spinal ganglia) to 0.81 (inferior mesenteric ganglion) pmol/g wet tissue. The presence of galanin was checked by HPLC in the antrum, intestine, and colon. HPLC of extractable material revealed a major peak coeluting with the synthetic porcine peptide and minor earlier peaks representing likely different molecular forms of galanin. Our study strengthens the notion that galanin acts in nervous control of the cat gut functions. 相似文献
18.
AbstractOptogenetics has recently gained recognition as a biological technique to control the activity of cells using light stimulation. Many studies have applied optogenetics to cell lines in the central nervous system because it has the potential to elucidate neural circuits, treat neurological diseases and promote nerve regeneration. There have been fewer studies on the application of optogenetics in the peripheral nervous system. This review introduces the basic principles and approaches of optogenetics and summarizes the physiology and mechanism of opsins and how the technology enables bidirectional control of unique cell lines with superior spatial and temporal accuracy. Further, this review explores and discusses the therapeutic potential for the development of optogenetics and its capacity to revolutionize treatment for refractory epilepsy, depression, pain, and other nervous system disorders, with a focus on neural regeneration, especially in the peripheral nervous system. Additionally, this review synthesizes the latest preclinical research on optogenetic stimulation, including studies on non-human primates, summarizes the challenges, and highlights future perspectives. The potential of optogenetic stimulation to optimize therapy for peripheral nerve injuries (PNIs) is also highlighted. Optogenetic technology has already generated exciting, preliminary evidence, supporting its role in applications to several neurological diseases, including PNIs. 相似文献
19.
20.
Pedro Martínez 《Acta zoologica》2011,92(4):383-392
Bery, A. and Martínez, P. 2010. Acetylcholinesterase activity in the developing and regenerating nervous system of the acoel Symsagittifera roscoffensis. —Acta Zoologica (Stockholm) 92 : 383–392. The use of the cholinergic system is widespread in the animal kingdom. It controls different processes, including reproduction and neural transmission. However, its evolutionary history is not yet well understood. For instance, the role played by the cholinergic system in the nervous system of basal bilaterian taxa, where the first signs of architectural complexity appear, is still unknown. Here, we describe the structure of the cholinergic system during the development and regeneration of the acoel flatworm Symsagittifera roscoffensis, using acetylcholinesterase (AchE) activity as a marker. In this species, AchE activity is observed at all developmental stages, including in the early embryos. The juvenile and adult patterns reveal the presence of a complex nervous system that includes three pairs of longitudinal neurite bundles, which are connected to an anterior centralized mass of neurons and neural processes formed by two pairs of connectives and four commissures. The power of the technique also allows the detection of newly born neurons as they are incorporated into the growing nervous system (during regeneration). 相似文献