首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When glucose or cellobiose was provided as an energy source for Fibrobacter succinogenes, there was a transient accumulation (as much as 0.4 mM hexose equivalent) of cellobiose or cellotriose, respectively, in the growth medium. Nongrowing cell suspensions converted cellobiose to cellotriose and longer-chain cellodextrins, and in this case the total cellodextrin concentration was as much as 20 mM (hexose equivalent). Because cell extracts of glucose- or cellobiose-grown cells cleaved cellobioise and cellotriose by phosphate-dependent reactions and glucose 1-phosphate was an end product, it appeared that cellodextrins were being produced by a reversible phosphorylase reaction. This conclusion was supported by the observation that the ratio of cellodextrins to cellodextrins with one greater hexose [n/(n + 1)] was approximately 4, a value similar to the equilibrium constant (Keq) of cellobiose phosphorylase (J. K. Alexander, J. Bacteriol. 81:903-910, 1961). When F. succinogenes was grown in a cellobiose-limited chemostat, cellobiose and cellotriose could both be detected, and the ratio of cellotriose to cellobiose was approximately 1 to 4. On the basis of these results, cellodextrin production is an equilibrium (mass action) function and not just an artifact of energy-rich cultural conditions. Cellodextrins could not be detected in low-dilution-rate, cellulose-limited continuous cultures, but these cultures had a large number of nonadherent cells. Because the nonadherent cells had a large reserve of polysaccharide and were observed at all stages of cell division, it appeared that they were utilizing cellodextrins as an energy source for growth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In this article we compared the metabolism of phosphorylated and unphosphorylated oligosaccharides (cellodextrins and maltodextrins) in Fibrobacter succinogenes S85 resting cells incubated with the following substrates: glucose; cellobiose; a mixture of glucose and cellobiose; and cellulose. Intracellular and extracellular media were analysed by (1)H-NMR and by TLC. The first important finding is that no cellodextrins were found to accumulate in the extracellular media of cells, regardless of the substrate; this contrasts to what is generally reported in the literature. The second finding of this work is that maltodextrins of degree of polymerization > 2 are synthesized regardless of the substrate, and can be used by the bacteria. Maltotriose plays a key role in this metabolism of maltodextrin. Maltodextrin-1-phosphate was detected in all the incubations, and a new metabolite, corresponding to a phosphorylated glucose derivative, was produced in the extracellular medium when cells were incubated with cellulose. The accumulation of these phosphorylated sugars increased with the degree of polymerization of the substrate.  相似文献   

3.
Glycogen synthase, an enzyme of historical importance in the field of reversible protein modification, is inactivated by phosphorylation and allosterically activated by glucose 6-phosphate (glucose-6-P). Previous analysis of yeast glycogen synthase had identified a conserved and highly basic 13-amino-acid segment in which mutation of Arg residues resulted in loss of activation by glucose-6-P. The equivalent mutations R578R579R581A (all three of the indicated Arg residues mutated to Ala) and R585R587R590A were introduced into rabbit muscle glycogen synthase. Whether expressed transiently in COS-1 cells or produced in and purified from Escherichia coli, both mutant enzymes were insensitive to activation by glucose-6-P. The effect of phosphorylation was studied in two ways. Purified, recombinant glycogen synthase was directly phosphorylated by casein kinase 2 and glycogen synthase kinase 3, under conditions that inactivate the wild-type enzyme. In addition, phosphorylation sites were converted to Ala by mutagenesis in wild-type and in the glucose-6-P desensitized mutants expressed in COS-1 cells. Phosphorylation inactivated the R578R579R581A mutant but had little effect on the R585R587R590A. This result was surprising since phosphorylation had the opposite effects on the corresponding yeast enzyme mutants. The results confirm that the region of glycogen synthase, Arg-578-Arg-590, is required for activation by glucose-6-P and suggest that it is part of a sensitive and critical switch involved in transitions between different conformational states. However, the role must differ subtly between the mammalian and the yeast enzymes.  相似文献   

4.
Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in plasma glucose and urinary paracetamol-glucuronide after infusion of [U-(13)C]glucose, [2-(13)C]glycerol, [1-(2)H]galactose, and paracetamol. In hepatocytes, glucose-6-phosphate (Glc-6-P) content, net glycogen synthesis, and lactate production from glucose and dihydroxyacetone increased strongly in the presence of S4048 (10 microm). In livers of S4048-treated rats (0.5 mg kg(-1)min(-)); 8 h) Glc-6-P content increased strongly (+440%), and massive glycogen accumulation (+1260%) was observed in periportal areas. Total glucose production was diminished by 50%. The gluconeogenic flux to Glc-6-P was unaffected (i.e. 33.3 +/- 2.0 versus 33.2 +/- 2.9 micromol kg(-1)min(-1)in control and S4048-treated rats, respectively). Newly synthesized Glc-6-P was redistributed from glucose production (62 +/- 1 versus 38 +/- 1%; p < 0.001) to glycogen synthesis (35 +/- 5% versus 65 +/- 5%; p < 0.005) by S4048. This was associated with a strong inhibition (-82%) of the flux through glucokinase and an increase (+83%) of the flux through glycogen synthase, while the flux through glycogen phosphorylase remained unaffected. In livers from S4048-treated rats, mRNA levels of genes encoding Glc-6-P hydrolase (approximately 9-fold), Glc-6-P translocase (approximately 4-fold), glycogen synthase (approximately 7-fold) and L-type pyruvate kinase (approximately 4-fold) were increased, whereas glucokinase expression was almost abolished. In accordance with unaltered gluconeogenic flux, expression of the gene encoding phosphoenolpyruvate carboxykinase was unaffected in the S4048-treated rats. Thus, acute inhibition of glucose-6-phosphatase activity by S4048 elicited 1) a repartitioning of newly synthesized Glc-6-P from glucose production into glycogen synthesis without affecting the gluconeogenic flux to Glc-6-P and 2) a cellular response aimed at maintaining cellular Glc-6-P homeostasis.  相似文献   

5.
The metabolism of glucose and cellobiose, products of cellulose hydrolysis, was investigated in four cellulolytic strains of the genus Fibrobacter: Fibrobacter succinogenes S85, 095, HM2 and Fibrobacter intestinalis NR9. In vivo 13C nuclear magnetic resonance was used to quantify the relative contribution of glucose and cellobiose to metabolite production, glycogen storage and cellodextrins synthesis in these four strains. The same features were found in all four strains of the genus Fibrobacter metabolizing simultaneously glucose and cellobiose: i) differential metabolism of glucose and cellobiose; glucose seems preferentially used for glycogen storage and energy production, while part of cellobiose seems to be diverted from glycolysis, ii) synthesis of cellodextrins, mainly from cellobiose not entering into glycolysis, iii) accumulation of glucose 6-phosphate, iv) simultaneous presence of cellobiose phosphorylase and cellobiase activities.Although genetically diverse, the Fibrobacter genus appears to possess a marked homogeneity in its carbon metabolism.  相似文献   

6.
We have tested the hypothesis that interconversion between multiple glucose-6-P-dependent forms of glycogen synthase helps regulate glycogen synthesis in adipose tissue. Our results indicate that interconversion of glycogen synthase in adipose tissue involves primarily dependent forms and that these interconversions were measured better by monitoring the activation constant (A0.5) for glucose-6-P than measuring the -: + glucose-6-P activity ratio. Insulin decreased and epinephrine increased the A0.5 for glucose-6-P without significant change in the activity ratio. Insulin consistently decreased the A0.5 in either the presence or absence of glucose, indicating that the insulin-promoted interconversion did not require increased hexose transport. Isoproterenol increased the A0.5 for glucose-6-P, while methoxamine was without effect, indicating beta receptors mediate adrenergic control of interconversion between glucose-6-P-dependent forms. The changes in the A0.5 produced by incubations with insulin or epinephrine were mutually reversible. We conclude that 1) glycogen synthesis in adipose tissue is catalyzed by multiple glucose-6-P-dependent forms of glycogen synthase, 2) hormones regulate glycogen metabolism by promoting reversible interconversions between these forms, and 3) there is no evidence that a glucose-6-P-independent form of glycogen synthase exists in intact adipose tissue.  相似文献   

7.
The Clostridium thermocellum cellobiose and cellodextrin phosphorylases (glucosyl transferases) in the cell extract were used to synthesize radiolabeled cellodextrins with a degree of polymerization (DP=2–6) from nonradioactive glucose-1-phosphate and radioactive glucose. Chain lengths of synthesized cellodextrin were controlled by the absence or presence of dithiothreitol and by reaction conditions. All cellodextrins have the sole radioactive glucose unit located at the reducing ends. Mixed cellodextrins (G2–G6) were separated efficiently by size-exclusion chromatography or less efficiently by thin-layer chromatography. A new rapid sampling device was developed using disposable syringes containing an ultracold methanol-quenching buffer. It was simple, less costly, and especially convenient for anaerobic fermentation. After an impulse feed of radiolabeled cellobiose, the intracellular sugar levels were measured after a series of operations—sampling, extracting, concentrating, separating, and reading. Results showed that the largest amount of radioactivity was cellobiose with lesser amounts of glucose, cellotriose, and cellotetraose, and an average DP of intracellular cellodextrins was ca. 2.  相似文献   

8.
Glycogen is a storage form of glucose utilized as an energy reserve by many organisms. Glycogen synthase, which is essential for synthesizing this glucose polymer, is regulated by both covalent phosphorylation and the concentration of glucose-6-P. With the yeast glycogen synthase Gsy2p, we recently identified two mutants, R579A/R580A/R582A [corrected] and R586A/R588A/R591A, in which multiple arginine residues were mutated to alanine that were completely insensitive to activation by glucose-6-P in vitro (Pederson, B. A., Cheng, C., Wilson, W. A., and Roach, P. J. (2000) J. Biol. Chem. 275, 27753-27761). We report here the expression of these mutants in Saccharomyces cerevisiae and, as expected from our findings in vitro, they were not activated by glucose-6-P. The R579A/R580A/R582A [corrected] mutant, which is also resistant to inhibition by phosphorylation, caused hyperaccumulation of glycogen. In contrast, the mutant R586A/R588A/R591A, which retains the ability to be inactivated by phosphorylation, resulted in lower glycogen accumulation when compared with wild-type cells. When intracellular glucose-6-P levels were increased by mutating the PFK2 gene, glycogen storage due to the wild-type enzyme was increased, whereas that associated with R579A/R580A/R582A [corrected] was not greatly changed. This is the first direct demonstration that activation of glycogen synthase by glucose-6-P in vivo is necessary for normal glycogen accumulation.  相似文献   

9.
We show that Mycobacterium smegmatis has an enzyme catalyzing transfer of maltose from [14C]maltose 1-phosphate to glycogen. This enzyme was purified 90-fold from crude extracts and characterized. Maltose transfer required addition of an acceptor. Liver, oyster, or mycobacterial glycogens were the best acceptors, whereas amylopectin had good activity, but amylose was a poor acceptor. Maltosaccharides inhibited the transfer of maltose from [14C]maltose-1-P to glycogen because they were also acceptors of maltose, and they caused production of larger sized radioactive maltosaccharides. When maltotetraose was the acceptor, over 90% of the 14C-labeled product was maltohexaose, and no radioactivity was in maltopentaose, demonstrating that maltose was transferred intact. Stoichiometry showed that 0.89 μmol of inorganic phosphate was produced for each micromole of maltose transferred to glycogen, and 56% of the added maltose-1-P was transferred to glycogen. This enzyme has been named α1,4-glucan:maltose-1-P maltosyltransferase (GMPMT). Transfer of maltose to glycogen was inhibited by micromolar amounts of inorganic phosphate or arsenate but was only slightly inhibited by millimolar concentrations of glucose-1-P, glucose-6-P, or inorganic pyrophosphate. GMPMT was compared with glycogen phosphorylase (GP). GMPMT catalyzed transfer of [14C]maltose-1-P, but not [14C]glucose-1-P, to glycogen, whereas GP transferred radioactivity from glucose-1-P but not maltose-1-P. GMPMT and GP were both inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol, but only GP was inhibited by isofagomine. Because mycobacteria that contain trehalose synthase accumulate large amounts of glycogen when grown in high concentrations of trehalose, we propose that trehalose synthase, maltokinase, and GMPMT represent a new pathway of glycogen synthesis using trehalose as the source of glucose.  相似文献   

10.
1. Frog liver has enzymatic systems able to interconvert glycogen synthase. 2. D to I conversion is achieved in vitro by incubation at 30 degrees C. ATP, ADP, inorganic phosphate and glycogen are inhibitors of this conversion, whereas glucose-6-P and Mg2+ stimulate it. 3. I to D conversion in vitro depends on ATP-Mg2+. Cyclic-AMP activates this conversion, while glucose-6-P inhibits it. 4. Injection of glucose, ribose, mannose, fructose, galactose, and cortisone into frogs increase liver percentage of I activity. 5. Glucagon and adrenaline decrease percentage of I activity.  相似文献   

11.
1. The activity of a particulate enzyme prepared from encysting cells of Acanthamoeba castellanii (Neff), previously shown to catalyze the incorporation of glucose from UDP-[14C]glucose into both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans, was stimulated several fold by glucose-6-phosphate and several related compounds. 2. Incorporation was observed when [14C]glucose-6-P was incubated with the particles in the presence of UDP-glucose. The results of product analysis by partial acid hydrolysis indicated that glucose-6-P stimulates the formation of both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans from UDP-[14C]glucose and was itself incorporated into an alkali-insoluble beta-(1 leads to 4)glucan. 3. When particles incubated with UDP-[14C]glucose and glucose-6-P were reisolated and then reincubated with unlabeled UDP-glucose and glucose-6-P, a loss of counts from the alkali-soluble fraction was detected along with a corresponding rise in the radioactivity of the alkali-insoluble fraction. This suggests that the alkali-soluble beta-glucan was converted to an alkali-insoluble product and possibly may be an intermediate stage in cellulose synthesis.  相似文献   

12.
The human placental glucose-6-P-dependent form of glycogen synthase, in the absence of glucose-6-P, can be activated by MnSO4. Separately, Mn2+ and SO4(2-) have no significant effect. In the presence of glucose-6-P, Mn2+ activates the enzyme, but SO4(2-) inhibits; MnSO4 synergetically increases the enzyme activity. Mn2+ reduces the Ka for glucose-6-P to one-tenth of the control value; SO4(2-) increases the Ka 5-fold; however, MnSO4 has no effect on Ka. MnSO4, like glucose-6-P, increases the Vmax of the enzyme in the presence of its substrate, UDP-glucose; it slightly increases the Km for UDP-glucose. In the presence of glucose-6-P, Mn2+ increases and SO4(2-) decreases the Vmax of the enzyme, but neither has an effect on the Km for UDP-glucose. At physiological concentrations of UDP-glucose and glucose-6-P, either Mn2+ or MnSO4 at concentrations less than 1 mM increases the enzyme activity as much as 8 mM glucose-6-P does. At physiological concentrations of UDP-glucose and glucose-6-P, Mn2+ or MnSO4 reverses the inhibition of the enzyme by ATP.  相似文献   

13.
Fibrobacter succinogenes S85, a cellulolytic rumen bacterium, is very efficient in degrading lignocellulosic substrates and could be used to develop a biotechnological process for the treatment of wastes. In this work, the metabolism of cellulose by F. succinogenes S85 was investigated using in vivo 13C NMR and 13C-filtered spin-echo difference 1H NMR spectroscopy. The degradation of unlabelled cellulose synthesised by Acetobacter xylinum was studied indirectly, in the presence of [1-13C]glucose, by estimating the isotopic dilution of the final bacterial fermentation products (glycogen, succinate, acetate). During the pre-incubation period of F. succinogenes cells with cellulose fibres, some cells ('non-adherent') did not attach to the solid material. Results for 'adherent' cells showed that about one fourth of the glucose units entering F. succinogenes metabolism originated from cellulose degradation. A huge reversal of succinate metabolism pathway and production of large amounts of unlabelled acetate which was observed during incubation with glucose only, was found to be much decreased in the presence of solid substrate. The synthesis of glucose 6-phophate was slightly increased in the presence of cellulose. Results clearly showed that 'non-adherent' cells were able to metabolise glucose very efficiently; consequently the metabolic state of these cells was not responsible for their 'non-adherence' to cellulose fibre.  相似文献   

14.
The Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been found to phosphorylate and inactivate glycogen synthase. With muscle glycogen synthase as a substrate, the reaction was stimulated by Ca2+ and by phosphatidylserine. The tumor-promoting phorbol esters 12-O-tetradecanoyl phorbol 13-acetate was also a positive effector, half-maximal activation occurring at 6 nM. Phosphorylation of glycogen synthase, but not histone, was partially inhibited by glycogen, half-maximally at 0.05 mg/ml, probably via a substrate-directed mechanism. The rate of glycogen synthase phosphorylation was approximately half that for histone; the apparent Km for glycogen synthase was 0.25 mg/ml. Protein kinase C also phosphorylated casein, the preferred substrate among the individual caseins being alpha s1-casein. Glycogen synthase was phosphorylated to greater than 1 phosphate/subunit with an accompanying reduction in the -glucose-6-P/+glucose-6-P activity ratio from 0.9 to 0.5. Phosphate was introduced into serine residues in both the NH2-terminal and COOH-terminal CNBr fragments of the enzyme subunit. The two main tryptic phosphopeptides mapped in correspondence with the peptides that contain site 1a and site 2. Lesser phosphorylation in an unidentified peptide was also observed. Rabbit liver and muscle glycogen synthases were phosphorylated at similar rates by protein kinase C. The above results are compatible with a role for protein kinase C in the regulation of glycogen synthase as was suggested by a recent study of intact hepatocytes.  相似文献   

15.
Fructose 2,6-bisphosphate (Fru-2,6-P2) plays an important role in the regulation of major carbohydrate fluxes as both allosteric activator and inhibitor of target enzymes. To examine the role of Fru-2,6-P2 in the regulation of hepatic carbohydrate metabolism in vivo, Fru-2,6-P2 levels were elevated in ADM mice with adenovirus-mediated overexpression of a double mutant bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (n = 6), in comparison to normal control mice (control, n = 6). The rates of hepatic glycogen synthesis in the ADM and control mouse liver in vivo were measured using new advances in 13C NMR including 3D localization in conjunction with [1-13C]glucose infusion. In addition to glycogen C1, the C6 and C2-C5 signals were measured simultaneously for the first time in vivo, which provide the basis for the estimation of direct and indirect synthesis of glycogen in the liver. The rate of label incorporation into glycogen C1 was not different between the control and ADM group, whereas the rate of label incorporation into glycogen C6 signals was in the ADM group 5.6 +/- 0.5 micro mol.g-1.h-1, which was higher than that of the control group of 3.7 +/- 0.5 micro mol.g-1.h-1 (P < 0.02). The rates of net glycogen synthesis, determined by the glycogen C2-C5 signal changes, were twofold higher in the ADM group (P = 0.04). The results provide direct in vivo evidence that the effects of elevated Fru-2,6-P2 levels in the liver include increased glycogen storage through indirect synthesis of glycogen. These observations provide a key to understanding the mechanisms by which elevated hepatic Fru-2,6-P2 levels promote reduced hepatic glucose production and lower blood glucose in diabetes mellitus.  相似文献   

16.
In extracts from the adductor muscle of the shell-fish, Pecten maximus, glycogen synthetase (EC.2.4.1.11) was found. The enzyme occurs predominantly as D form (glucose-6-P dependent for activity). An I form (G-6-P independent) was also present. Kinetics of glycogen synthetase showed that the Ka for G-6-P in the D form was 10 fold higher than in the I form. Both forms of glycogen synthetase were interconverted through reactions catalyzed by phosphatase and kinase enzymes respectively. Glucose-6-P and Mg+2 must be present to stabilize glycogen synthetase and to activate the synthetase D phosphatase, found in the 90,000 X g protein-glycogen complex. The conversion of synthetase D to I was inhibited by F-, glycogen, ATP and UTP. When F- was present the effect of G-6-P on synthetase and phosphatase suggested that conversion involved the existence of more than a single glycogen synthetase phosphatase enzyme. ATP and Mg+2 were necessary for the conversion of synthetase I to D, and the conversion was stimulated by cAMP.  相似文献   

17.
L-Proline's glycogenic action is unlike that of other amino acids in that it produces effects beyond those explainable by a simple increase in osmolarity (Baquet, A., Hue, L., Meijer, A. J., van Woerkom, G. M., and Plomp, P. J. A. M. (1990) J. Biol. Chem. 265, 955-959). We postulate that this effect may relate to inhibition of hepatic glucose-6-P hydrolysis by a proline-derived metabolite. We tested this hypothesis with isolated livers from rats fasted 48 h which were perfused with L-proline or L-glutamine. Net glucose and net glycogen production and levels of glucose-6-P and certain other hepatic metabolites were measured. The data obtained support our hypothesis by demonstrating fundamental differences in the metabolic fates of proline and glutamine in the liver. Both pass through alpha-ketoglutarate in the initial stage of gluconeogenesis, but proline supports hepatic glycogen formation while glutamine does not. The concomitant increase in hepatic glucose-6-P and proline-associated glyconeogenesis suggests that inhibition of glucose-6-P hydrolysis by a proline-derived metabolite may divert glucose-6-P produced from proline from glucose production and to glycogen synthesis. This conclusion is supported by the effects of perfusions with and without proline (3-mercaptopicolinate present) on (a) glyconeogenesis and glucose formation from dihydroxyacetone, (b) net glucose uptake and glycogen formation with 30 mM glucose as substrate, and (c) glucose production from endogenous glycogen in perfused livers from fed rats.  相似文献   

18.
Complete conversion of skeletal muscle glycogen synthetase from the I form to the D form requires incorporation of 2 mol of phosphate per enzyme subunit (90,000 g). Incubation of sythetase I with low concentrations of adenosine 3':5'-monophosphate(cAMP)-dependent protein kinase (10 units/ml) and ATP (0.1 to 0.3 mM) plus magnesium acetate (10 mM) results in incorporation within 1/2 hour of 1 mol of phosphate persubunit concomitant with a decrease in the synthetase activity ratio (minus glucose-6-P/plus glucose-6-P) from 0.85 to 0.25. Further incubation for 6 hours does not greatly increase the phosphate content of the synthetase or promote conversion to the D form. This level of phosphorylation is not increased by raising the concentration of protein kinase to 150 units/ml and is not influenced by the presence of glucose-6-P, UDP-glucose, or glycogen. However, at protein kinase concentrations of 10,000 to 30,000 units/ml a second mol of phosphate is incorporated per subunit, and the sythetase activity ratio decreases to 0.05 or less. In addition to the 2 mol of phosphate persubunit which are required for formation of sythetase D, further phosphorylation can be observed which is not associated with changes in synthetase activity. This phosphorylation occurs at a slow rate, is increased by raising the ATP concentration to 2 to 4mM, and is not blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. These data indicate that skeletal muscle glycogen synthetase contains multiple phosphorylation sites only two of which are involved in the synthetase I to D conversion.  相似文献   

19.
The presence of additional forms of glycogen synthase (UDPG: alpha-1,4-glucan alpha-4-glucosyltransferase) besides the I form (independent on glucose-6-P for activity) and the D form (dependent on glucose-6-P for activity) long ago described, is inferred from patterns of their interconversions obtained by processes of phosphorylation and dephosphorylation. An intermediate form more phosphorylated than the I form and less than the D form, which is completely inactive in these assay conditions, and a superphosphorylated form, more phosphorylated than the D form and also inactive even in presence of 0.01 M glucose-6-P are described.  相似文献   

20.
Summary Using a mathematical model of carbohydrate metabolism in Dictyostelium discoideum, the kinetic expressions describing the activities of glucokinase and glucose-6-P phosphatase have been analyzed. The constraints on the kinetic mechanisms and relative activities of these two enzymes were investigated by comparing computer simulations to experimental data. The results indicated that, (1) glucose-6-P is compartmentalized with respect to the enzymes involved in glucose-6-P, trehalose and glycogen metabolism, (2) a differences of approximately 0.6 mm/min in maximum specific activity of glucokinase compared to glucose-6-P phosphatase is required in order for the model to produce end product carbohydrate levels consistent with those observed experimentally, (3) the Km of glucokinase for glucose strongly influences the steady state levels of glucose in the absence of external glucose, and (4) changing the order of product removal in the reaction catalyzed by glucose-6-P phosphatase influences the level of glycogen and trehalose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号