首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interphase nucleus exists as a highly dynamic system, the physical properties of which have functional importance in gene regulation. Not only can gene expression be influenced by the local sequence context, but also by the architecture of the nucleus in three-dimensions (3D), and by the interactions between these levels via chromatin modifications. A challenging task is to resolve the complex interplay between sequence- and genome structure-based control mechanisms. Here, we created a collection of 277 Arabidopsis lines that allow the visual tracking of individual loci in living plants while comparing gene expression potential at these locations, via an identical reporter cassette. Our studies revealed regional gene silencing near a heterochromatin island, via DNA methylation, that is correlated with mobility constraint and nucleolar association. We also found an example of nucleolar association that does not correlate with gene suppression, suggesting that distinct mechanisms exist that can mediate interactions between chromatin and the nucleolus. These studies demonstrate the utility of this novel resource in unifying structural and functional studies towards a more comprehensive model of how global chromatin organization may coordinate gene expression over large scales.  相似文献   

3.
Odorant receptor gene regulation: implications from genomic organization.   总被引:3,自引:0,他引:3  
Odorant receptor genes comprise the largest known family of G-protein-coupled receptors in vertebrates. These receptor genes are tightly clustered in the genomes of every vertebrate organism investigated, including zebrafish, mice and humans, and they appear to have expanded and duplicated throughout evolution. In a mechanism that has yet to be elucidated, each olfactory neuron expresses a single receptor gene. This highly restricted expression pattern underlies the ability to distinguish between a wide variety of odorants. Here, we address the evolutionary expansion of odorant receptor genes and the role genomic organization of these genes might have in their tightly regulated expression.  相似文献   

4.
5.
Genome-wide association and genomic selection in animal breeding   总被引:2,自引:0,他引:2  
Hayes B  Goddard M 《Génome》2010,53(11):876-883
Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.  相似文献   

6.
周丽霞  曹红星 《广西植物》2020,40(7):977-987
该研究从NCBI网站下载油棕全基因组序列信息,从The Arabidopsis Information Resource(TAIR)数据库中下载得到拟南芥WRKY转录因子序列,并在油棕基因组数据库中进行BLAST同源序列比对分析,通过NCBI在线工具CDD和PFAM数据库进行蛋白结构与分析,剔除无WRKY结构域的系列,利用生物信息学方法对油棕WRKY转录因子进行分析及功能预测。结果表明:(1)从油棕基因组数据库中发掘WRKY转录因子95个,该WRKY转录因子蛋白质所编码氨基酸大小为116~1 303 bp,95个均为亲水性蛋白,总体为不稳定蛋白(EgWRKY25和EgWRKY56除外),60个蛋白以α-螺旋为主要二级结构元件,35个以无规卷曲为主要二级结构元件。(2)保守结构域系统进化树结果表明,油棕WRKY转录因子家族蛋白主要分为三大类,即I、Ⅱ和Ⅲ类,其中I类分为I C、I N亚类,Ⅱ类分为Ⅱa、Ⅱb、Ⅱc和Ⅱd亚类。(3)内含子和外显子结构显示,EgWRKY基因结构进化高度保守。以上结果为油棕WRKY转录因子的挖掘、功能分析及分子生物学研究奠定了基础,同时为分子育种和遗传改良提供...  相似文献   

7.
Nuclear organization impacts gene expression activity and cell phenotype. Our current understanding is mainly derived from ensemble-level sequencing studies that reflect the 3D genome structure of millions of cells. These approaches have provided invaluable details on the 3D organizations of the genome and their relation to other nuclear landmarks. However, they mostly lack the ability to provide multimodal information simultaneously at the single-cell level. In recent years, cutting-edge imaging technologies have risen to the challenge of simultaneously describing multiple components of the nuclear space at the single-cell level, paving the way for a deeper understanding of the genome structure–function relationship. This review will focus on the development and utilization of such technologies to gain a multi-component view of the nucleus at single-cell resolution, dissecting the complexity and heterogeneity of nuclear organization.  相似文献   

8.
9.
The resistin gene is a potential candidate for the etiology of insulin resistance and type 2 diabetes and has been implicated as the molecular link between type 2 diabetes and obesity. Unlike the mouse resistin, expression of the human resistin appears to be regulated differently. We report comparative analyses of the mouse and human genomic fragments encoding the resistin gene. At the amino acid level the two proteins exhibit 59% identity. While at the mRNA level the human resistin shows 64.4% sequence identity with its mouse counterpart, the mouse resistin genomic sequence displays only 46.7% sequence identity with the human resistin and is almost three times bigger than the human resistin. The intronic sequences per se displayed the least identities (28.7%), however the intron boundaries were highly conserved between human and mouse. The mouse resistin carries a very large intron in the 3' UTR, which has a number of regulatory sequences possibly involved in differential gene expression. Of particular significance is the presence of a PPAR/RXR heterodimer binding site within intron X (IntX-PPRE) which may possibly confer TZD responsiveness. Oligonucleotides carrying the authentic PPAR/RXR binding element (Aco-PPRE) as well as IntX-PPRE specifically bound factors (PPAR/RXR heterodimers) present in differentiated 3T3-L1 adipocyte cells in an electrophoretic mobility shift assay. IntX-PPRE oligonucleotide modulated the expression of the luciferase reporter gene in transient transfection assays using 3T3-L1 cells.  相似文献   

10.
11.
Accelerating biomass improvement is a major goal of Miscanthus breeding. The development and implementation of genomic-enabled breeding tools, like marker-assisted selection (MAS) and genomic selection, has the potential to improve the efficiency of Miscanthus breeding. The present study conducted genome-wide association (GWA) and genomic prediction of biomass yield and 14 yield-components traits in Miscanthus sacchariflorus. We evaluated a diversity panel with 590 accessions of M. sacchariflorus grown across 4 years in one subtropical and three temperate locations and genotyped with 268,109 single-nucleotide polymorphisms (SNPs). The GWA study identified a total of 835 significant SNPs and 674 candidate genes across all traits and locations. Of the significant SNPs identified, 280 were localized in mapped quantitative trait loci intervals and proximal to SNPs identified for similar traits in previously reported Miscanthus studies, providing additional support for the importance of these genomic regions for biomass yield. Our study gave insights into the genetic basis for yield-component traits in M. sacchariflorus that may facilitate marker-assisted breeding for biomass yield. Genomic prediction accuracy for the yield-related traits ranged from 0.15 to 0.52 across all locations and genetic groups. Prediction accuracies within the six genetic groupings of M. sacchariflorus were limited due to low sample sizes. Nevertheless, the Korea/NE China/Russia (N = 237) genetic group had the highest prediction accuracy of all genetic groups (ranging 0.26–0.71), suggesting that with adequate sample sizes, there is strong potential for genomic selection within the genetic groupings of M. sacchariflorus. This study indicated that MAS and genomic prediction will likely be beneficial for conducting population-improvement of M. sacchariflorus.  相似文献   

12.
The nucleosome: from genomic organization to genomic regulation   总被引:17,自引:0,他引:17  
Khorasanizadeh S 《Cell》2004,116(2):259-272
  相似文献   

13.
14.
15.
Xiao-Yan Zhu  De-Tian Cai  Yi Ding 《Génome》2008,51(5):332-340
We investigated the molecular characteristics and chromosomal organization of 5S rDNA in the genus Oryza, including diploid and tetraploid species. A phylogenetic tree of Oryza species was constructed based on the non-transcribed spacer sequences of 5S rDNA, and some novel relationships were discovered. Specifically, comparative sequence analysis of 5S rDNA in several wild rice species showed unique characteristics inconsistent with the model of concerted evolution: (1) multiple distinct 5S rDNA types were detected within a species, leading to intraspecific divergence of 5S rDNA; (2) multiple identical 5S rDNA types were shared among species, resulting in interspecies clustering of 5S rDNA types; and (3) intraspecific nucleotide diversity was detected within a 5S rDNA class. Our results obtained by fluorescence in situ hybridization revealed that each rice species studied contained only one 5S rDNA locus with two hybridization sites, which were located on either chromosome 7 or chromosome 11. These results suggest that different 5S rDNA classes within the rice genome were arranged together and that one pair of 5S rDNA loci from a diploid progenitor of the tetraploid species might have been lost during evolution. Taken together, our data show that 5S rDNA in rice species is more informative at the gene level than at the chromosome level.  相似文献   

16.
The connection between transcription and genomic instability   总被引:13,自引:0,他引:13  
  相似文献   

17.
18.

Background

Non-heading Chinese cabbage (NHCC), belonging to Brassica, is an important leaf vegetable in Asia. Although genetic analyses have been performed through conventional selection and breeding efforts, the domestication history of NHCC and the genetics underlying its morphological diversity remain unclear. Thus, the reliable molecular markers representative of the whole genome are required for molecular-assisted selection in NHCC.

Results

A total of 20,836 simple sequence repeats (SSRs) were detected in NHCC, containing repeat types from mononucleotide to nonanucleotide. The average density was 62.93 SSRs/Mb. In gene regions, 5,435 SSRs were identified in 4,569 genes. A total of 5,008 primer pairs were designed, and 74 were randomly selected for validation. Among these, 60 (81.08%) were polymorphic in 18 Cruciferae. The number of polymorphic bands ranged from two to five, with an average of 2.70 for each primer. The average values of the polymorphism information content, observed heterozygosity, Hardy-Weinberg equilibrium, and Shannon’s information index were 0.2970, 0.4136, 0.5706, and 0.5885, respectively. Four clusters were classified according to the unweighted pair-group method with arithmetic average cluster analysis of 18 genotypes. In addition, a total of 1,228,979 single nucleotide polymorphisms (SNPs) were identified in the NHCC through a comparison with the genome of Chinese cabbage, and the average SNP density in the whole genome was 4.33/Kb. The number of SNPs ranged from 341,939 to 591,586 in the 10 accessions, and the average heterozygous SNPs ratio was ~42.53%. All analyses showed these markers were high quality and reliable. Therefore, they could be used in the construction of a linkage map and for genetic diversity studies for NHCC in future.

Conclusions

This is the first systematic and comprehensive analysis and identification of SSRs in NHCC and 17 species. The development of a large number of SNP and SSR markers was successfully achieved for NHCC. These novel markers are valuable for constructing genetic linkage maps, comparative genome analysis, quantitative trait locus (QTL) mapping, genome-wide association studies, and marker-assisted selection in NHCC breeding system research.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1534-0) contains supplementary material, which is available to authorized users.  相似文献   

19.
The genomic organization of the mouse dihydrofolate reductase gene has been determined by hybridization of specific cDNA sequences to restriction endonuclease-generated fragments of DNA from methotrexate-resistant S-180 cells. The dihydrofolate reductase gene contains a minimum of five intervening sequences (one in the 5′ untranslated region and four in the protein-coding region) and spans a minimum of 42 kilobase pairs on the genome. Genomic sequences at the junction of the intervening sequence and mRNA-coding sequence and at the polyadenylation site have been determined. A similar organization is found in independently isolated methotrexate-resistant cell lines, in the parental sensitive cell line and in several inbred mouse strains, indicating that this organization represents that of the natural gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号