首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Collier S  Lee H  Burgess R  Adler P 《Genetics》2005,169(4):2035-2045
Much of our understanding of the genetic mechanisms that control planar cell polarity (PCP) in epithelia has derived from studies of the formation of polarized cell hairs during Drosophila wing development. The correct localization of an F-actin prehair to the distal vertex of the pupal wing cell has been shown to be dependent upon the polarized subcellular localization of Frizzled and other core PCP proteins. However, the core PCP proteins do not organize actin cytoskeletal polarity directly but require PCP effector proteins such as Fuzzy and Inturned to mediate this process. Here we describe the characterization of a new PCP effector gene, fritz, that encodes a novel but evolutionarily conserved coiled-coil WD40 protein. We show that the fritz gene product functions cell-autonomously downstream of the core PCP proteins to regulate both the location and the number of wing cell prehair initiation sites.  相似文献   

2.
Yan J  Huen D  Morely T  Johnson G  Gubb D  Roote J  Adler PN 《Genetics》2008,180(1):219-228
The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes. One is located on the distal side of wing cells and a second on the proximal side. This asymmetric protein accumulation is thought to lead to the activation of the cytoskeleton on the distal side, which in turn leads to each cell forming a single distally pointing hair. We identified mwh as CG13913, which encodes a novel G protein binding domain–formin homology 3 (GBD–FH3) domain protein. The Mwh protein accumulated on the proximal side of wing cells prior to hair formation. Unlike planar polarity proteins such as Frizzled or Inturned, Mwh also accumulated in growing hairs. This suggested that mwh had two temporally separate functions in wing development. Evidence for these two functions also came from temperature-shift experiments with a temperature-sensitive allele. Overexpression of Mwh inhibited hair initiation, thus Mwh acts as a negative regulator of the cytoskeleton. Our data argued early proximal Mwh accumulation restricts hair initiation to the distal side of wing cells and the later hair accumulation of Mwh prevents the formation of ectopic secondary hairs. This later function appears to be a feedback mechanism that limits cytoskeleton activation to ensure a single hair is formed.  相似文献   

3.
During planar polarity patterning of the Drosophila wing, a "core" group of planar polarity genes has been identified which acts downstream of global polarity cues to locally coordinate cell polarity and specify trichome production at distal cell edges. These genes encode protein products that assemble into asymmetric apicolateral complexes that straddle the proximodistal junctional region between adjacent cells. We have carried out detailed genetic analysis experiments, analysing the requirements of each complex component for planar polarity patterning. We find that the three transmembrane proteins at the core of the complex, Frizzled, Strabismus and Flamingo, are required earliest in development and are the only components needed for intercellular polarity signalling. Notably, cells that lack both Frizzled and Strabismus are unable to signal, revealing an absolute requirement for both proteins in cell-cell communication. In contrast the cytoplasmic components Dishevelled, Prickle and Diego are not needed for intercellular communication. These factors contribute to the cell-cell propagation of polarity, most likely by promotion of intracellular asymmetry. Interestingly, both local polarity propagation and trichome placement occur normally in mutant backgrounds where asymmetry of polarity protein distribution is undetectable, suggesting such asymmetry is not an absolute requirement for any of the functions of the core complex.  相似文献   

4.
Planar polarisation of tissues is essential for many aspects of developmental patterning. It is regulated by a conserved group of core planar polarity proteins, which localise asymmetrically within cells prior to morphological signs of polarisation. A subset of these core proteins also interact across cell boundaries, mediating intercellular communication that co-ordinates polarity between neighbouring cells. Core protein localisation subsequently mediates changes in the actin cytoskeleton which lead to overt polarisation. In this review we discuss the mechanisms by which the core planar polarity proteins become asymmetrically localised, and the significance of this subcellular localisation for both intercellular communication and downstream effects on the cytoskeleton.  相似文献   

5.
Most chemoattractants rely on activation of the heterotrimeric G-protein Gαi to regulate directional cell migration, but few links from Gαi to chemotactic effectors are known. Through affinity chromatography using primary neutrophil lysate, we identify Homer3 as a novel Gαi2-binding protein. RNA interference–mediated knockdown of Homer3 in neutrophil-like HL-60 cells impairs chemotaxis and the establishment of polarity of phosphatidylinositol 3,4,5-triphosphate (PIP3) and the actin cytoskeleton, as well as the persistence of the WAVE2 complex. Most previously characterized proteins that are required for cell polarity are needed for actin assembly or activation of core chemotactic effectors such as the Rac GTPase. In contrast, Homer3-knockdown cells show normal magnitude and kinetics of chemoattractant-induced activation of phosphoinositide 3-kinase and Rac effectors. Chemoattractant-stimulated Homer3-knockdown cells also exhibit a normal initial magnitude of actin polymerization but fail to polarize actin assembly and intracellular PIP3 and are defective in the initiation of cell polarity and motility. Our data suggest that Homer3 acts as a scaffold that spatially organizes actin assembly to support neutrophil polarity and motility downstream of GPCR activation.  相似文献   

6.
We have found that the actin and microtubule cytoskeletons have overlapping, but distinct roles in the morphogenesis of epidermal hairs during Drosophila wing development. The function of both the actin and microtubule cytoskeletons appears to be required for the growth of wing hairs, as treatment of cultured pupal wings with either cytochalasin D or vinblastine was able to slow prehair extension. At higher doses a complete blockage of hair development was seen. The microtubule cytoskeleton is also required for localizing prehair initiation to the distalmost part of the cell. Disruption of the microtubule cytoskeleton resulted in the development of multiple prehairs along the apical cell periphery. The multiple hair cells were a phenocopy of mutations in the inturned group of tissue polarity genes, which are downstream targets of the frizzled signaling/signal transduction pathway. The actin cytoskeleton also plays a role in maintaining prehair integrity during prehair development as treatment of pupal wings with cytochalasin D, which inhibits actin polymerization, led to branched prehairs. This is a phenocopy of mutations in crinkled, and suggests mutations that cause branched hairs will be in genes that encode products that interact with the actin cytoskeleton.  相似文献   

7.
Almost all epidermal cells on the Drosophila wing produce a single cuticular hair. This is formed in the pupae from a microvillus-like cell projection called the prehair. Previous experiments have shown the existence of two mechanisms that ensure that only a single hair is made. One is the restriction of prehair initiation to a small subregion of the cell by the action of the frizzled tissue polarity pathway. The second is a system that ensures the integrity of the prehair. Mutations and drugs that inhibit the actin cytoskeleton lead to the splitting of a single prehair into multiple smaller hairs. We report that large polyploid cells produce multiple hairs both because they form multiple independent prehair initiation centers and because the larger than normal hairs these cells produce have a tendency to split. We show that reducing cell size by starvation partially suppresses the phenotype seen in polyploid cells and that increasing apical cell surface area by mechanical stretching also results in the formation of multiple prehair initiation centers. We also show that the frizzled tissue polarity pathway is functional in large polyploid cells even if it is unable to restrict prehair initiation to a small region of the cell. We conclude that both of these cellular systems are limited in their ability to scale to accommodate larger cell size.  相似文献   

8.
The Drosophila wing provides an appropriate model system for studying genetic programming of planar cell polarity (PCP) [1-4]. Each wing cell respects the proximodistal (PD) axis; i.e., it localizes an assembly of actin bundles to its distalmost vertex and produces a single prehair. This PD polarization requires the redistribution of Flamingo (Fmi), a seven-pass transmembrane cadherin, to proximal/distal cell boundaries; otherwise, the cell mislocalizes the prehair [5]. Achievement of the biased Fmi pattern depends on two upstream components in the PCP signaling pathway: Frizzled (Fz), a receptor for a hypothetical polarity signal, and an intracellular protein, Dishevelled (Dsh) [6-8]. Here, we visualized endogenous Dsh in the developing wing. A portion of Dsh colocalized with Fmi, and the distributions of both proteins were interdependent. Furthermore, Fz controlled the association of Dsh with cell boundaries, which association was correlated with the presence of hyperphosphorylated forms of Dsh. Our results, together with a recent study on Fz distribution [9], support the possibility that Fz, Dsh, and Fmi constitute a signaling complex and that its restricted localization directs cytoskeletal reorganization only at the distal cell edge.  相似文献   

9.
10.
Cellular morphogenesis, including polarized outgrowth, promotes tissue shape and function. Polarized vesicle trafficking has emerged as a fundamental mechanism by which protein and membrane can be targeted to discrete subcellular domains to promote localized protrusions. Frizzled (Fz)/planar cell polarity (PCP) signaling orchestrates cytoskeletal polarization and drives morphogenetic changes in such contexts as the vertebrate body axis and external Drosophila melanogaster tissues. Although regulation of Fz/PCP signaling via vesicle trafficking has been identified, the interplay between the vesicle trafficking machinery and downstream terminal PCP-directed processes is less established. In this paper, we show that Drosophila CK1-γ/gilgamesh (gish) regulates the PCP-associated process of trichome formation through effects on Rab11-mediated vesicle recycling. Although the core Fz/PCP proteins dictate prehair formation broadly, CK1-γ/gish restricts nucleation to a single site. Moreover, CK1-γ/gish works in parallel with the Fz/PCP effector multiple wing hairs, which restricts prehair formation along the perpendicular axis to Gish. Our findings suggest that polarized Rab11-mediated vesicle trafficking regulated by CK1-γ is required for PCP-directed processes.  相似文献   

11.
Two pathways regulate planar polarity: the core proteins and the Fat-Dachsous-Four-jointed (Ft-Ds-Fj) system. Morphogens specify complementary expression patterns of Ds and Fj that potentially act as polarizing cues. It has been suggested that Ft-Ds-Fj-mediated cues are weak and that the core proteins amplify them. Another view is that the two pathways act independently to generate and propagate polarity: if correct, this raises the question of how gradients of Ft and Ds expression or activity might be interpreted to provide strong cellular polarizing cues and how such cues are propagated from cell to cell. Here, we demonstrate that the complementary expression of Ds and Fj results in biased Ft and Ds protein distribution across cells, with Ft and Ds accumulating on opposite edges. Furthermore, boundaries of Ft and Ds expression result in subcellular asymmetries in protein distribution that are transmitted to neighboring cells, and asymmetric Ds localization results in a corresponding asymmetric distribution of the myosin Dachs. We show that the generation of subcellular asymmetries of Ft and Ds and the core proteins is largely independent in the wing disc and additionally that ommatidial polarity in the eye can be determined without input from the Ft-Ds-Fj system, consistent with the two pathways acting in parallel.  相似文献   

12.
The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton.  相似文献   

13.
Polarity is a common feature of many different cell types, including the Caenorhabditis elegans zygote, the Drosophila oocyte and mammalian epithelial cells. The initial establishment of cell polarity depends on asymmetric cues that lead to reorganization of the cytoskeleton and polarized localization of several cortical proteins that act downstream of the polarization cues. The past year revealed that homologs of the C. elegans par (partitioning defective) genes are also essential for establishing polarity in Drosophila and vertebrate cells. There is growing evidence that the proteins encoded by these genes interact with key regulators of both the actin and the microtubule cytoskeletons.  相似文献   

14.
Planar cell polarization represents the ability of cells to orient within the plane of a tissue orthogonal to the apical basal axis. The proper polarized function of multiciliated cells requires the coordination of cilia spacing and cilia polarity as well as the timing of cilia beating during metachronal synchrony. The planar cell polarity pathway and hydrodynamic forces have been shown to instruct cilia polarity. In this paper, we show how intracellular effectors interpret polarity to organize cellular morphology in accordance with asymmetric cellular function. We observe that both cellular actin and microtubule networks undergo drastic reorganization, providing differential roles during the polarized organization of cilia. Using computational angular correlation analysis of cilia orientation, we report a graded cellular organization downstream of cell polarity cues. Actin dynamics are required for proper cilia spacing, global coordination of cilia polarity, and coordination of metachronic cilia beating, whereas cytoplasmic microtubule dynamics are required for local coordination of polarity between neighboring cilia.  相似文献   

15.
Cell motility and cell polarity are essential for morphogenesis, immune system function, and tissue repair. Many animal cells move by crawling, and one main driving force for movement is derived from the coordinated assembly and disassembly of actin filaments. As tissue culture cells migrate to close a scratch wound, this directional extension is accompanied by Golgi apparatus reorientation, to face the leading wound edge, giving the motile cell inherent polarity aligned relative to the wound edge and to the direction of cell migration. Cellular proteins essential for actin polymerization downstream of Rho family GTPases include the Arp2/3 complex as an actin nucleator and members of the Wiskott-Aldrich Syndrome protein (WASP) family as activators of the Arp2/3 complex. We therefore analyzed the involvement of the Arp2/3 complex and WASP-family proteins in in vitro wound healing assays using NIH 3T3 fibroblasts and astrocytes. In NIH 3T3 cells, we found that actin and Arp2/3 complex contributed to cell polarity establishment. Moreover, overexpression of N-terminal fragments of Scar2 (but not N-WASP or Scar1 or Scar3) interfere with NIH 3T3 Golgi polarization but not with cell migration. In contrast, actin, Arp2/3, and WASP-family proteins did not appear to be involved in Golgi polarization in astrocytes. Our results thus indicate that the requirement for Golgi polarity establishment is cell-type specific. Furthermore, in NIH 3T3 cells, Scar2 and the Arp2/3 complex appear to be involved in the establishment and maintenance of Golgi polarity during directed migration.  相似文献   

16.
One of the most important questions in cell biology concerns how cells reorganize after sensing polarity cues. In the present study, we describe the formation of an actin-rich domain on the apical surface of human primary endothelial cells adhering to the substrate and investigate its role in cell polarity. We used confocal immunofluorescence procedures to follow the redistribution of proteins required for endothelial cell polarity during spreading initiation. Activated Moesin, vascular endothelial cadherin and partitioning defective 3 were found to be localized in the apical domain, whereas podocalyxin and caveolin-1 were distributed along the microtubule cytoskeleton axis, oriented from the centrosome to the cortical actin-rich domain. Moreover, activated signaling molecules were localized in the core of the apical domain in tight association with filamentous actin. During cell attachment, loss of the apical domain by Moesin silencing or drug disruption of the actin cytoskeleton caused irregular cell spreading and mislocalization of polarity markers. In conclusion, our results suggest that the apical domain that forms during the spreading process is a structural organizer of cell polarity by regulating trafficking and activation of signaling proteins.  相似文献   

17.
Interactions between proteins are an essential part of biology, and the desire to identify these interactions has led to the development of numerous technologies to systematically map protein–protein interactions at a large scale. As in most cellular processes, protein interactions are central to the control of cell polarity, and a full understanding of polarity will require comprehensive knowledge of the protein interactions involved. At its core, cell polarity is established through carefully regulated mutually inhibitory interactions between several groups of cortical proteins. While several interactions have been identified, the dynamics and molecular mechanisms that control these interactions are not well understood. Cell polarity also needs to be integrated with cellular processes including junction formation, cytoskeletal organization, organelle positioning, protein trafficking, and functional specialization of membrane domains. Moreover, polarized cells need to respond to external cues that coordinate polarity at the tissue level. Identifying the protein–protein interactions responsible for integrating polarity with all of these processes remains a major challenge, in part because the mechanisms of polarity control vary in different contexts and with developmental times. Because of their unbiased nature, systematic large-scale protein–protein interaction mapping approaches can be particularly helpful to identify such mechanisms. Here, we discuss methods commonly used to generate proteome-wide interactome maps, with an emphasis on advances in our understanding of cell polarity that have been achieved through application of such methods.  相似文献   

18.
Cell polarity plays an important role in plant development, but the mechanisms that first establish polarity cues remain obscure. By contrast, a flurry of information has recently emerged on the elaboration of cell shape from such unknown initial cell-polarity cues. Recent studies suggest that Rho-related GTPases in plants (ROPs), and their effector targets among the ROP-interactive CRIB motif-containing proteins (RICs), mediate two antagonistic pathways that have opposing action on cell polarization. ROP proteins appear to interact directly with upstream regulators of the ARP2/3 complex, which are conserved modulators of the actin cytoskeleton. ROP function is dependent on the class 1 ADP-ribosylation factors (ARFs), which are core components of the vesicle transport machinery that are also involved in the polar localization of PIN-FORMED (PIN) family auxin efflux facilitators.  相似文献   

19.
The widely conserved Arp2/3 complex regulates branched actin dynamics that are necessary for a variety of cellular processes. In Caenorhabditis elegans, the actin cytoskeleton has been extensively characterized in its role in establishing PAR asymmetry; however, the contributions of actin to the maintenance of polarity before the onset of mitosis are less clear. Endocytic recycling has emerged as a key mechanism in the dynamic stabilization of cellular polarity, and the large GTPase dynamin participates in the stabilization of cortical polarity during maintenance phase via endocytosis in C. elegans. Here we show that disruption of Arp2/3 function affects the formation and localization of short cortical actin filaments and foci, endocytic regulators, and polarity proteins during maintenance phase. We detect actin associated with events similar to early endosomal fission, movement of endosomes into the cytoplasm, and endosomal movement from the cytoplasm to the plasma membrane, suggesting the involvement of actin in regulating processes at the early endosome. We also observe aberrant accumulations of PAR-6 cytoplasmic puncta near the centrosome along with early endosomes. We propose a model in which Arp2/3 affects the efficiency of rapid endocytic recycling of polarity cues that ultimately contributes to their stable maintenance.  相似文献   

20.
In Drosophila, wing hairs are aligned in a distally oriented, parallel array. The frizzled pathway determines proximal-distal cell polarity in the wing; however, in frizzled pathway mutants, wing hairs remain parallel. How wing hairs align has not been determined. We have demonstrated a novel role for the septate junction proteins Gliotactin (Gli) and Coracle (Cora) in this process. Prior to prehair extension, Gli and Cora were restricted to basolateral membranes. During pupal prehair development, Gli and Cora transiently formed apical ribbons oriented from the distal wing tip to the proximal hinge. These ribbons were aligned beneath prehair bases and persisted for several hours. During this time, Gli was lost entirely from the basolateral domain. A Gliotactin mutation altered the apical polarization Gli and Cora and induced defects in hair alignment in pupal and adult stages. Genetic and cell biological assays demonstrated that Gli and Cora function to align hairs independently of frizzled. Taken together, our results indicate that Gli and Cora function as the first-identified members of a long-predicted, frizzled-independent parallel alignment mechanism. We propose a model whereby the apical polarization of Gli and Cora functions to stabilize and align prehairs relative to anterior-posterior cell boundaries during pupal wing development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号