首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
13C NMR studies with aluminum (Al)-stressed Pseudomonas fluorescens revealed that the trivalent metal was secreted in association with oxalate and phosphatidylethanolamine (PE). These moieties were observed in the insoluble pellet obtained upon incubation of these resting cells in the presence of either Al-citrate or citrate. This extrusion process was concomitant with the utilization of either of these tricarboxylic acids as a substrate. While only minimal amounts of Al were secreted in the presence of such carbon source as glucose, succinate or oxaloacetate, oxalate did permit the efflux of Al. Neither alpha-ketoglutarate nor ethylenediaminetetraacetic acid (EDTA) was effective in dislocating Al from the cells. The elimination of Al from the cells did not appear to be affected by p-dinitrophenol (DNP) or dicyclohexylcarbodiimide (DCCD) or azide, but was sensitive to temperature, pH and cerulenin, an inhibitor of lipid synthesis. Thus, it appears that P. fluorescens detoxifies Al via its extrusion in association with oxalate and PE in a process that apparently does not necessitate the direct utilization of energy.  相似文献   

2.
Carbon repression in aspergilli   总被引:7,自引:0,他引:7  
  相似文献   

3.
Abstract Accumulation of citric acid by Aspergillus niger depends on a high flux through glycolysis. We have investigated the possibility of control of this flux by trehalose 6-phosphate, an inhibitor of hexokinase of Saccharomyces cerevisiae and other eukaryotes (Blasquez et al., FEBS Lett. (1993) 329, 517ndash;54). Hexokinase of A. niger was shown in vitro to be only weakly inhibited by trehalose 6-phosphate (K, 1.5–2 mM). To investigate the in vivo relevance of this inhibition, we used isogenic strains of A. niger , carrying either a disruption or an amplification of the trehalose-6-phosphate synthase A (T6PSA)-encoding gene ( ggsA ) and exhibiting corresponding differences in T6PSA activity. These strains produced citric acid at comparable rates and with similar yields on 1 or 2.5% (w/v) sucrose. At 5–14% (w/v) sucrose, the ggsA disrupted strain initiated citric acid accumulation earlier, whereas the multicopy strain showed the reverse effect. When sucrose was replaced by lactose, which enabled only low rates of catabolism irrespective of its concentration (1–8%), no differences in the initiation or rate of citric acid accumulation were observed between the three strains. The possible mechanisms by which ggsA controls glycolytic flux in A. niger in the presence of high sugar concentrations are discussed.  相似文献   

4.
5.
6.
Despite the recent discovery that trehalose synthesis is widespread in higher plants very little is known about its physiological significance. Here we report on an Arabidopsis mutant (tps1), disrupted in a gene encoding the first enzyme of trehalose biosynthesis (trehalose-6-phosphate synthase). The tps1 mutant is a recessive embryo lethal. Embryo morphogenesis is normal but development is retarded and stalls early in the phase of cell expansion and storage reserve accumulation. TPS1 is transiently up-regulated at this same developmental stage and is required for the full expression of seed maturation marker genes (2S2 and OLEOSN2). Sucrose levels also increase rapidly in seeds during the onset of cell expansion. In Saccharomyces cerevisiae trehalose-6-phosphate (T-6-P) is required to regulate sugar influx into glycolysis via the inhibition of hexokinase and a deficiency in TPS1 prevents growth on sugars (Thevelein and Hohmann, 1995). The growth of Arabidopsis tps1-1 embryos can be partially rescued in vitro by reducing the sucrose level. However, T-6-P is not an inhibitor of AtHXK1 or AtHXK2. Nor does reducing hexokinase activity rescue tps1-1 embryo growth. Our data establish for the first time that an enzyme of trehalose metabolism is essential in plants and is implicated in the regulation of sugar metabolism/embryo development via a different mechanism to that reported in S. cerevisiae.  相似文献   

7.
In glucose-limited aerobic chemostat cultures of a wild-type Saccharomyces cerevisiae and a derived hxk2 null strain, metabolic fluxes were identical. However, the concentrations of intracellular metabolites, especially fructose 1,6-bisphosphate, and hexose-phosphorylating activities differed. Interestingly, the hxk2 null strain showed a higher maximal growth rate and higher Crabtree threshold dilution rate, revealing a higher oxidative capacity for this strain. After a pulse of glucose, aerobic glucose-limited cultures of wild-type S. cerevisiae displayed an overshoot in the intracellular concentrations of glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate before a new steady state was established, in contrast to the hxk2 null strain which reached a new steady state without overshoot of these metabolites. At low dilution rates the overshoot of intracellular metabolites in the wild-type strain coincided with the immediate production of ethanol after the glucose pulse. In contrast, in the hxk2 null strain the production of ethanol started gradually. However, in spite of the initial differences in ethanol production and dynamic behaviour of the intracellular metabolites, the steady-state fluxes after transition from glucose limitation to glucose excess were not significantly different in the wild-type strain and the hxk2 null strain at any dilution rate.  相似文献   

8.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   

9.
10.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by a small number of sugars (glucose, maltose, starch at 1 g l(-1)). Glucose consumption starts after other substrates have been depleted. Glucose metabolism proceeds via a constitutive, salt-inhibited hexokinase and a constitutive salt-dependent nicotinamide adenine dinucleotide phosphate (NADP)-linked glucose-6-phosphate dehydrogenase. Glucose dehydrogenase and fructose-1,6-bisphosphate aldolase activity could not be detected. It is therefore suggested that Salinibacter metabolizes glucose by the classic Entner-Doudoroff pathway and not by the Embden-Meyerhof glycolytic pathway or by the modified Entner-Doudoroff pathway present in halophilic Archaea of the family Halobacteriaceae, in which the phosphorylation step is postponed. However, activity of 2-keto-3-deoxy-6-phosphogluconate aldolase could not be detected in extracts of Salinibacter cells, whether or not grown in the presence of glucose.  相似文献   

11.
Growth of Pseudomonas fluorescens in batch culture with glucose and organic acids resulted in typical diauxic responses at 30° C but no detectable diauxic lag at 5° C.At 30° C, organic acids were preferentially utilized during the first growth phase. Glucose utilization was delayed unitl onset of the second growth phase. Systems involved in direct uptake and catabolism of glucose responded in a manner compatible with respression by malate and/or its metabolites and induction by glucose and/or its metabolites. The oxidative non-phosphorylated pathway, through gluconate and 2-ketogluconate (2-KG) as intermediates, was not induced during either growth phase.At 5° C, growth with glucose and organic acids was biphasic but without diauxic lag. Organic acids were preferentially utilized during the first growth phase. Although carbon from glucose was not fully catabolized until onset of the second growth phase, glucose was oxidized to and accumulated extracellularly as gluconate and 2-KG during the first growth phase. No significant repression of glucose-catabolizing enzymes was observed during growth with organic acids in the presence of glucose. However, uptake activities for gluconate and 2-KG did not increase significantly until onset of the second growth phase.Thus, at low temperatures, psychrotrophic P. fluorescens oxidized glucose to extracellular 2-KG, while growing on preferred carbon sources. The 2-KG was then catabolized after depletion of the organic acid.  相似文献   

12.
13.
Mutations in the TPS1 gene, which encodes trehalose-6-P synthase, cause a glucose-negative phenotype in Saccharomyces cerevisiae. Antimycin A or disruption of the QCR9 gene, which encodes one subunit of the cytochrome bc 1 complex, restore the ability to grow in glucose-containing media. Under these conditions the cell excreted a large amount of glycerol, corresponding to about 20% of the glucose taken up. Suppression appears to be achieved by diversion of accumulated glycolytic intermediates to the production of glycerol, thereby providing NAD+ and phosphate for the glyceraldehyde-3-P dehydrogenase reaction. Analysis of the mutation scil-1, which also suppresses the glucose-negative phenotype of tps1 mutants, showed that glucose transport was decreased in scil-1 mutants. The gene SCI1 was cloned and its nucleotide sequence revealed it to be identical to CAT3/SNF4. The suppression mediated by scil-1 is attributable to a decrease in glycolytic flux.This paper is dedicated to Professor Friedrich K. Zimmermann on the occasion of his sixtieth birthday  相似文献   

14.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

15.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

16.
Clément E  Mesini PJ  Pattus F  Schalk IJ 《Biochemistry》2004,43(24):7954-7965
In iron-deficient conditions, Pseudomonas aeruginosa secretes a major fluorescent siderophore named pyoverdin (Pvd), which after chelating iron(III) is transported back into the cell via its outer membrane receptor FpvA. FpvA is a TonB-dependent transport protein and has the ability to bind Pvd in its apo- or iron-loaded form. The fluorescence properties of Pvd were used to determine the binding kinetics of metal-free and metal-loaded Pvd to FpvA and showed two major features. First, the kinetics of formation of the FpvA-Pvd complex, in vivo and in vitro, are markedly slower compared to those observed for FpvA-Pvd-metal. Second, apo-Pvd and Pvd-metal absorbed with biphasic kinetics to FpvA: the bimolecular step (association of the ligand with the receptor) is followed by a slower step (t(1/2) values of 5 and 34 min for Pvd-metal and Pvd, respectively) that presumably leads to a more stable complex. The most likely explanation for this second step is that the binding of the ligand to the receptor induces a conformational change on FpvA, which may be different, depending on the loading status of Pvd. Analysis of the dissociation of metal-free Pvd from FpvA revealed an energy and a TonB dependency. The dissociation of iron-free Pvd from FpvA in the absence of the TonB protein occurs with slow kinetics in the range of hours, but it can be highly activated by the protonmotive force and TonB to reach a kinetic with a t(1/2) of 1 min. Apparently, under iron-limited conditions, TonB activates the FpvA receptor, resulting in a fast release of iron-free Pvd and generating an unloaded FpvA receptor, competent for binding extracellular Pvd-Fe.  相似文献   

17.
18.
The observations made by Sacks et al. [Neurochem. Res. 8, 661-685 (1983)] on which they based their criticisms of the deoxyglucose method have been examined and found to have no relationship to the conclusions drawn by them. (1) The observations of Sacks et al. (1983) of constant concentrations of [14C]deoxyglucose and [14C]deoxyglucose-6-phosphate, predominantly in the form of product, reflects only the postmortem phosphorylation of the precursor during the dissection of the brain in their experiments. When the brains are removed by freeze-blowing, the time courses of the [14C]deoxyglucose and [14C]deoxyglucose-6-phosphate concentrations in brain during the 45 min after the intravenous pulse are close to those predicted by the model of the deoxyglucose method. (2) Their observation of a reversal of the cerebral arteriovenous difference from positive to negative for [14C]deoxyglucose and not for [14C]glucose after an intravenous infusion of either tracer is, contrary to their conclusions, not a reflection of glucose-6-phosphatase activity in brain but the consequence of the different proportions of the rate constants for efflux and phosphorylation for these two hexoses in brain and is fully predicted by the model of the deoxyglucose method. (3) It is experimentally demonstrated that there is no significant arteriovenous difference for glucose-6-phosphate in brain, that infusion of [32P]glucose-6-phosphate results in no labeling of brain, and that the blood-brain barrier is impermeable to glucose-6-phosphate. Glucose-6-phosphate cannot, therefore, cross the blood-brain barrier, and the observation by Sacks and co-workers [J. Appl. Physiol. 24, 817-827 (1968); Neurochem. Res. 8, 661-685 (1983)] of a positive cerebral arteriovenous difference for [14C]glucose-6-phosphate and a negative arteriovenous difference for [14C]glucose cannot possibly reflect glucose-6-phosphatase activity in brain as concluded by them. Each of the criticisms raised by Sacks et al. has been demonstrated to be devoid of validity.  相似文献   

19.
BACKGROUND: The colonization of the gastric mucosa with Helicobacter pylori is accompanied by elevated levels of proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, and IL-8. The aim of our study was to determine the mechanisms of IL-6 stimulation in phagocytes upon H. pylori infection. MATERIALS AND METHODS: We investigated the secretion of IL-6 by different professional phagocytes from murine and human origin, including granulocyte- and monocyte-like cells and macrophages derived from human peripheral blood monocytes (PBMCs). The influence of viability, phagocytosis, and the impact of different subcellular fractions of H. pylori bacteria were evaluated. RESULTS: IL-6 levels induced by H. pylori were low in cell lines derived from murine and human monocytes and in human granulocyte-like cells. By contrast, macrophages derived from human PBMCs were highly responsive to both H. pylori and Escherichia coli. IL-6 induction was blocked by inhibition of actin-dependent processes prior to infection with H. pylori, but not with E. coli or E. coli lipopolysaccharide (LPS). Using cell fractionation, the most activity was found in the H. pylori membrane. H. pylori LPS exhibited a 10(3)- to 10(4)-fold lower biologic activity than E. coli LPS, suggesting a minor role for toll-like receptor 4 (TLR4)-mediated signalling from the exterior. CONCLUSIONS: From these data, we conclude that macrophages may be a major source of IL-6 in the gastric mucosa upon H. pylori infection. The IL-6 induction by H. pylori in these cells is a multifactorial process, which requires the uptake and presumably degradation of H. pylori bacteria.  相似文献   

20.
Gao L  Song Y  Cao J  Wang S  Wei H  Jiang H  Lu L 《Cellular signalling》2011,23(11):1750-1757
Establishment and maintenance of cell polarity are coordinated by signaling pathways such as NDR (nuclear Dbf2-related) protein-kinase signaling and calcium signaling pathway. The NDR family of kinase is structurally related to the human myotonic dystrophy kinase, which, when impaired, confers a disease that involves changes in cytoarchitecture and ion homeostasis. CotA kinase, a member of the NDR protein kinase family, forms a complex with MobB to regulate cell polarized growth in Aspergillus nidulans. Our previous study demonstrated that mobB/cotA defects could be suppressed by the osmotic stress in the presence of external calcium. In this study, via the genetic and molecular approach, we further demonstrated that Ca2+-permeable stretch-activated nonselective cation channel-MidA, calcium/calmodulin-dependent protein phosphatase catalatic subunit-CnaA and external calcium, but not voltage-gated calcium channel homolog-CchA, were required for the osmotic stabilizer-coupled suppression. The up-regulation of calcium/calcineurin signaling pathway induced by osmotic stress might be the reason for bypassing the requirements of NDR kinase complex, which is otherwise necessary for polar morphogenesis. Our results suggest that calcium-calcineurin signaling pathway coordinates with MobB/CotA kinase complex in regulating polarity growth via maintaining cellular calcium homeostasis. However, CchA may act differently as other components in calcium signaling pathway in Aspergillus nidulans. These findings provide an excellent opportunity to identify the potential pathway linking NDR protein-kinase network to calcium signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号