首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When rat peritoneal mast cells were exposed to the ionophore A23187, a principle was released that possessed the biologic properties of slow reacting substance (SRS) from various sources. The response was dose, time, and temperature dependent with no activity being demonstrated in unstimulated cells. Supporting evidence that the mast cell product was similar or identical to SRS obtained from other sources include: 1) appropriate differential bioassay profile, 2) resistance to lipolysis and proteolysis, 3) acid lability and base stability, 4) inactivation by limpet arylsulfatase, and 5) inhibition by low concentrations FPL 55712. These data demonstrate that the isolated rat peritoneal mast cell contains the biosynthetic capacity to produce a bioreactive substance with the properties of SRS.  相似文献   

2.
Previous studies in a line of rat basophilic leukemia (RBL 1) cells have indicated that the slow reacting substance (SRS) made during stimulation with the divalent cation ionophore, A23187, is derived from arachidonic acid (AA). In the present report, various inhibitors of AA metabolism were compared with regard to their effects on SRS formation and incorporation of radioactivity from [1-14C]-AA into known metabolites of the lipoxygenase and cyclooxygenase pathways. An apparently close parallel between lipoxygenase product formation and SRS synthesis is demonstrated. In addition, exogenous 5-hydroperoxy-eicosatetraenoic acid (5-HPETE) has been shown to markedly enhance SRS synthesis, even when A23187 is absent. The data provide very strong evidence that SRS is produced through the lipoxygenase pathway.  相似文献   

3.
The generation of slow reacting substance (SRS) from ionophore A23187-stimulated rat peritoneal mast cells was enhanced by arachidonic acid (AA). This SRS generation was inhibited by 5,8,11,14-eicosatetraynoic acid (ETYA), an acetylenic analogue of AA and an inhibitor of both fatty acid cyclooxygenase and lipoxygenase. Indomethacin, a fatty acid cyclooxgenase inhibitor, had an enhancing effect upon SRS generation. This suggests SRS generation occurred through an ETYA sensitive step--perhaps a lipoxygenase. Radiolabel from [14C]-AA was incorporated into SRS with comigration of radioactivity and bioreactivity in silicic acid and thin layer chromatographies. Upon silicic acid chromatography, the active principle was eluted in the methanol fraction. Two-dimensional thin layer chromatography revealed chromatographic separation from other known spasmogenic substances and phospholipids. Mast cell SRS was found to display physiochemical properties similar to those of rat basophilic leukemia cell SRS, namely: that mast cell SRS generation was 1) enhanced by arachidonic acid; 2) inhibited by ETYA but not by indomethacin; 3) incorporation of [14C]-AA into the active principle; and 4) similar behavior during purification in silicic acid and thin layer chromatographies.  相似文献   

4.
The mononuclear cells in peritoneal washings from normal rats can be induced to produce large amounts of slow reacting substance of anaphylaxis by incubation with 10 mM cysteine in the presence of the calcium ionophore A-23187. This production of slow reacting substance could be inhibited by the addition of non-steroidal anti-inflammatory drugs, e.g., indomethacin, ibuprofen and flurbiprofen, Furthermore, mediator production was inhibited by eicosatetraynoic acid, the substrate analog of arachidonic acid, and by 9,11-azoprosta-5, 13-dienoic acid (AZO analog 1), a structural analog of the prostaglandin endoperoxide, PGH2, which known to inhibit thromboxane synthesis. Relatively high concentrations of hydrocortisone acetate inhibited mediator production; this inhibition could be partly reversed by the addition of arachidonic acid or to a lesser extent by eicosatrienoic acid. Preliminary results suggest that a small fraction of the 3H-labled arachidonic acid which was taken up by these cells in vitro was associated with slow reacting substance. We postulate that slow reacting substance of anaphylaxis may be derived from a prostaglandin endoperoxide which is formed during the oxidation of arachidonic acid by the prostaglandin fatty acid cyclooxygenase.  相似文献   

5.
In rat basophilic leukemia (RBL-1) cells stimulated with A-23187, the major slow reacting substance (SRS) species contain glutathione, cysteinyl-glycine, or cysteine in their side chains, corresponding or closely related to leukotrienes LTC4, LTD4, and LTE4, respectively. Evidence is presented that most of the SRS produced during the first few minutes of stimulation by the ionophore has a glutathionyl side chain which is sequentially converted to cysteinyl-glycine and cysteine.  相似文献   

6.
The mononuclear cells in peritoneal washings from normal rats can be induced to produce large amounts of slow reacting substance of anaphylaxis by incubation with 10 mM cysteine in the presence of the calcium ionophore A-23187. This production of slow reacting substance could be inhibited by the addition of non-steroidal anti-inflammatory drugs, e.g., indomethacin, ibuprofen and flurbiprofen. Furthermore, mediator production was inhibited by eicosatetraynoic acid, the substrate analog of arachidonic acid, and by 9,11-azoprosta-5,13-dienoic acid (AzO analog 1), a structural analog of the prostaglandin endoperoxide, PGH2, which is known to inhibit thromboxane synthesis. Relatively high concentrations of hydrocortisone acetate inhibited mediator production; this inhibition could be partly reversed by the addition of arachidonic acid or to a lesser extent by eicosatrienoic acid. Preliminary results suggest that a small fraction of the 3H-labeled arachidonic acid which was taken up by these cells in vitro was associated with slow reacting substance. We postulate that slow reacting substance of anaphylaxis may be derived from a prostaglandin endoperoxide which is formed during the oxidation of arachidonic acid by the prostaglandin fatty acid cyclooxygenase.  相似文献   

7.
Radiolabeled slow reacting substance (SRS) from rat basophilic leukemia cells (RBL-1) or rat peritoneal mast cells was generated by stimulation with the divalent cation ionophore A23187 in the presence of [1?14C]-arachidonic acid (AA). These radiolabeled SRSs were purified by sequential adsorption, gel filtration and partition chromatography on Sephadex LH-20 with correspondence of bio- and radioactivities. Two-dimensional high performance thin layer chromatography of the active principles continued to show comigration of bio- and radioactivities. RBL-1 and mast cells incorporated [14C]-AA into bioactive SRS which are analogous based upon similar behavior during purification.  相似文献   

8.
Using radiolabeled cysteine and arachidonic acid as biosynthetic precursors, the slow reacting substance (SRS) produced by the rat basophilic cell line, RBL-1, has been characterized as a family of thiolipids derived from arachidonic acid.  相似文献   

9.
When rat basophilic leukemia (RBL-1) cells were exposed to the ionophore A23187, a substance was released that produced a prolonged contraction of guinea pig ileum resembling that seen with slow reacting substances (SRSs) from various sources. The response was temperature, dose, and the time dependent with no activity being demonstrated in unstimulated cells. Several lines of evidence indicated that the RBL-1 product was markedly similar or identical to SRSs obtained from non-neoplastic tissues: 1) appropriate behavior in seven different chromatographic systems, 2) an appropriate profile of activity on various smooth muscle preparations, 3) an ability of low concentrations of the selective SRS inhibitor FPL 55712 to block the guinea pig ileal response, 4) failure of chymotrypsin to destroy activity, 5) loss of the activity after incubation with arylsulfatase, and 6) an ability to release activity from cells preincubated with indomethacin. Since RBL-1 cells can be grown in considerable guantity and under optimal conditions an average of 1500 SRS units/10(7) cells can be obtained, these cells should be useful as a biosynthetic source in further attempts to purify and characterize the SRS molecule.  相似文献   

10.
In rat basophilic leukemia (RBL-1) cells stimulated with A-23187, the major slow reacting substance (SRS) species contain glutathione, cysteinyl-glycine, or cysteine in their side chains, corresponding or closely related to leukotrienes LTC4, LTD4, and LTE4, respectively.3 Evidence is presented that most of the SRS produced during the first few minutes of stimulation by the ionophore has a glutathionyl side chain which is sequentially converted to cysteinyl-glycine and cysteine.  相似文献   

11.
We have recently described the structure elucidation of slow reacting substance of anaphylaxis (SRS-A) from lung and of a slow reacting substance (SRS) from basophilic leukaemia cells as 5-hydroxy-6-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid. The stereochemistry of this molecule has now been shown to be 5(S)-hydroxy-6(R)-cysteinylglycinyl-7,9-trans-11,14-cis-eicosatetraenoic acid by comparison of the synthetic and natural products and their derivatives using mass spectrometric and HPLC chromatographic techniques. The synthetic and natural compounds are also indistinguishable by their pharmacological properties, their conversion by soybean lipoxygenase, and their UV spectra.  相似文献   

12.
Leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated rat lungs. If lipoxygenase products are involved in the hypoxic pressor response they might be produced during acute alveolar hypoxia and a leukotriene inhibitor should block both the vasoconstriction and leukotriene production that occurs in response to hypoxia. We investigated in isolated blood perfused rat lungs whether leukotriene C4 (LTC4) could be recovered from whole lung lavage fluid during ongoing hypoxic vasoconstriction. Lung lavage from individual rats had slow reacting substance (SRS)-like myotropic activity by guinea pig ileum bioassay. Pooled lavage (10 lungs) as analyzed by reverse phase high performance liquid chromatography had an ultraviolet absorbing component at the retention time for LTC4. At radioimmunoassay, and SRS myotropic activity by bioassay. LTC4 was not found during normoxic ventilation, during normoxic ventilation after a hypoxic pressor response, or during vasoconstriction elicited by KCl. Diethylcarbamazine citrate, a leukotriene synthesis blocker, concomitantly inhibited the hypoxic vasoconstriction and LTC4 production. Thus 5-lipoxygenase products may play a role in the sequence of events leading to hypoxic pulmonary vasoconstriction.  相似文献   

13.
Leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated rat lungs. If lipoxygenase products are involved in the hypoxic pressor response they might be produced during acute alveolar hypoxia and a leukotriene inhibitor should block both the vasoconstriction and leukotriene production that occurs in response to hypoxia. We investigated in isolated blood perfused rat lungs whether leukotriene C4 (LTC4) could be recovered from whole lung lavage fluid during ongoing hypoxic vasoconstriction. Lung lavage from individual rats had slow reacting substance (SRS)-like myotropic activity by guinea pig ileum bioassay. Pooled lavage (10 lungs)_as analyzed by reverse phase high performance liquid chromatography had an ultraviolet absorbing component at the retention time for LTC4. At this retention time the element had both LTC4 immunoreactivitiy by radioimmunoassay, and SRS myotropic activity by bioassay. LTC4 was not found during normoxic ventilation, during normoxic ventilation after a hypoxic pressor response, or during vasoconstriction elicited by KCL. Diethylcarbamazine citrate, a leukotriene synthesis blocker, concomitantly inhibited the hypoxic vasoconstriction and LTC4 production. Thus 5-lipoxygenase products may play a role in the sequence of events leading to hypoxic pulmonary vasoconstriction.  相似文献   

14.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11-eicosatrienoic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arachidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF1 alpha and TXB2 compared to control lungs. Thus there is an association between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like material in rats raised on an EFAD diet.  相似文献   

15.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11- eicosatrieonic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arichidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF and TXB2 compared to control lungs. Thus there is an associated between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like materiali rat raised on an EFAD diet.  相似文献   

16.
When synthetic [1-14C]5-hydroperoxy-eicosatetraenoic acid was incubated with rat basophilic cells, incorporation of the radiolabel into slow reacting substance (SRS) could be demonstrated as evidenced by comigration of spasmogenic activity and radioactivity after purification by high pressure liquid chromatography. This provides direct evidence that SRS is a product of the lipoxygenase pathway.  相似文献   

17.
Mouse mastocytoma cells incubated with ionophore A23187 and eicosapentaenoic acid (n-3) produced a slow reacting substance with different properties compared with leukotriene C4 (previously designated leukotriene C). This product was characterized by spectroscopy and enzymatic and chemical degradations to be 5-hydroxy-6-S-glutathionyl-7,9,11,14,17-eicosapentaenoic acid (leukotriene C5). Leukotriene C5 has similar biological activity on the isolated guinea pig ileum but is less potent than is leukotriene C4.  相似文献   

18.
Slow reacting substance (SRS), produced by rat peritoneal mononuclear cells after stimulation with ionophore A23187, consists of two main components (Bach, M.K. et al. (1979) J. Immunol. 122, 160–165). One of these components was recently identified as leukotriene C-1. The other component has now been identified as leukotriene D.  相似文献   

19.
The structure of a slow reacting substance (SRS) from mouse mastocytoma cells was recently reported (Murphy, R.C., Hammarström, S. and Samuelsson, B. (1979) Proc. Natl. Acad. Sci. USA, in press). We proposed that SRS is formed from a previously described unstable epoxide intermediate in the formation of dihydroxylated arachidonic acid metabolites in leukocytes. The term is introduced for compounds which like SRS are non-cyclized C20 carboxylic acids with one or two oxygen substituents and three conjugated double bonds.  相似文献   

20.
Type II B arylsulfatases are known to inactivate slow reacting substance (SRS), but the mechanism is unclear. In the present study, ordinary commercial preparations of Sigma limpet arylsulfatase largely inactivated the glutathionyl and cysteinyl-glycyl forms of SRS, but the cysteinyl form of SRS was largely resistant to the enzyme. Evidence is presented which established that a major mechanism for the inactivation of the glutathionyl and cysteinyl-glycyl SRS types, at least by the particular enzyme preparations we have studied, involves cleavage of the glycine moiety from the sulfur containing side chain. This was confirmed by digestion studies with glutathione itself. In addition, there is ome evidence to indicate that the enzyme may destabilize the double bond structure of the SRS molecule, contributing to the overall inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号