首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The region including the conserved Ser65-Asp66 dipeptide in the tetracycline/H+ antiporter (TET) encoded by transposon Tn10 is thought to play a gating role (Yamaguchi, A., Ono, N., Akasaka, T., Noumi, T., and Sawai, T. (1990) J. Biol. Chem. 265, 15525-15530). The dipeptide is in putative interhelix loop2-3, which also includes the conserved sequence motif, GXXXXRXGRR, found in all TET proteins and sugar/H+ symporters. Through the combination of localized random and site-directed mutagenesis, each residue in loop2-3 was replaced. Among 10 residues in putative loop2-3, the important residues, of which substitution resulted in significant reduction or complete loss of the transport activity, were Gly62, Asp66, Gly69, and Arg70. The defect in the transport activity of the Gly62 and Gly69 substitution mutants corresponded to the steric hindrance by the substituents as to the putative beta-turn structure of the peptide backbone containing these glycines. Of 3 conserved Arg residues, the replacement of only Arg70 caused complete loss of the activity except for replacement with Lys, indicating the importance of a positive charge at this position, which is similar to the essentiality of a negative charge at Asp66. A "charge-neutralizing" intra-loop salt bridge between Asp66 and Arg70 was not likely because the double mutant in which Asp66 and Arg70 were replaced with asparagine and leucine, respectively, showed no transport activity. A triple mutant with only one positive charge at Arg70 in this loop showed about half the wild-type activity, indicating that the polycationic nature of the loop was not critical for the activity. Cys mutants as to the unessential residues in the loop were modifiable with N-ethylmaleimide, except for the Met64----Cys and Arg71----Cys mutants; however, the modification of only the Ser65----Cys mutant caused significant inhibition of the transport activity, indicating that position 65 is a unique position in the structure of loop2-3.  相似文献   

2.
The importance of two putative Zn2+-binding (Asp347, Glu429) and two catalytic (Arg431, Lys354) residues in the tomato leucine aminopeptidase (LAP-A) function was tested. The impact of substitutions at these positions, corresponding to the bovine LAP residues Asp255, Glu334, Arg336, and Lys262, was evaluated in His6-LAP-A fusion proteins expressed in Escherichia coli. Sixty-five percent of the mutant His6-LAP-A proteins were unstable or had complete or partial defects in hexamer assembly or stability. The activity of hexameric His6-LAP-As on Xaa-Leu and Leu-Xaa dipeptides was tested. Most substitutions of Lys354 (a catalytic residue) resulted in His6-LAP-As that cleaved dipeptides at slower rates. The Glu429 mutants (a Zn2+-binding residue) had more diverse phenotypes. Some mutations abolished activity and others retained partial or complete activity. The E429D His6-LAP-A enzyme had Km and kcat values similar to the wild-type His6-LAP-A. One catalytic (Arg431) and one Zn-binding (Asp347) residue were essential for His6-LAP-A activity, as most R431 and D347 mutant His6-LAP-As did not hydrolyze dipeptides. The R431K His6-LAP-A that retained the positive charge had partial activity as reflected in the 4.8-fold decrease in kcat. Surprisingly, while the D347E mutant (that retained a negative charge at position 347) was inactive, the D347R mutant that introduced a positive charge retained partial activity. A model to explain these data is proposed.  相似文献   

3.
W Seol  A J Shatkin 《Biochemistry》1992,31(13):3550-3554
To investigate an active site(s) in the Escherichia coli alpha-ketoglutarate premease, 11 point mutants were made in the corresponding structural gene, kgtP, by oligonucleotide-directed mutagenesis and the polymerase chain reaction. On the basis of sequences conserved in KgtP and related members of a transporter superfamily [Henderson P. J. F., & Maiden, M. C. (1990) Philos. Trans. R. Soc. London B 326, 391], Arg76 was replaced with Ala, Asp, or Lys; Asp88 with Asn or Glu; His90 with Ala; Arg92 with Ala or Lys; and Arg198 with Ala, Asp, or Lys. Mutant proteins expressed using the T7 polymerase system were in each case shown to be membrane-associated. However, they differed in transport activity. Mutants H90A and R198K had activities similar to that of wild type, and R76K and R198A retained 10-60% of the wild-type activity. In all other mutants, alpha-ketoglutarate transport was abolished. The results suggest that Arg92, which is highly conserved among other members of the transporter superfamily, is necessary for activity and also that Asp88 is critical for function, as observed for the tetracycline transporter. These data show further that a positive charge is essential at position 76 and is also important, but not absolutely required, at position 198 for alpha-ketoglutarate transport. Unlike lacY permease which was inactivated by deleting the last helix [McKenna, E., Hardy, D., Pastore, J. C., & Kaback, H. R. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2969], a KgtP truncation mutant missing the last putative membrane-spanning region was relatively stable and also retained 10-50% of the wild-type level of alpha-ketoglutarate transport activity.  相似文献   

4.
Cytosolic sulfotransferases (STs) catalyze the sulfation of hydroxyl containing compounds. Human phenol sulfotransferase (SULT1A1) is the major human ST that catalyzes the sulfation of simple phenols. Because of its broad substrate specificity and lack of endogenous substrates, the biological function of SULT1A1 is believed to be an important detoxification enzyme. In this report, amino acid modification, computer structure modeling, and site-directed mutagenesis were used for studies of Arg residues in the active site of SULT1A1. The Arg-specific modification reagent, 2,3-butanedione, inactivated SULT1A1 in an efficient, time- and concentration-dependent manner, suggesting Arg residues play an important role in the catalytic activity of SULT1A1. According to the computer model, Arg78, Arg130, and Arg257 may be important for SULT1A1 catalytic activity. Site-directed mutagenesis results demonstrated that the positive charge on Arg78 is not critical for SULT1A1 because R78A is still active. In contrast, a negative charge at this position, R78E, completely inactivated SULT1A1. Arg78 is in close proximity to the site of sulfuryl group transfer. Arg257 is located very close to the 3'-phosphate in adenosine 3'-phosphate 5'-phosphosulfate (PAPS). Site-directed mutagenesis demonstrated that Arg257 is critical for SULT1A1: both R257A and R257E are inactive. Although Arg130 is also located very close to the 3'-phosphate of PAPS, R130A and R130E are still active, suggesting that Arg130 is not a critical residue for the catalytic activity of SULT1A1. Computer modeling suggests that the ionic interaction between the positive charge on Arg257, and the negative charge on 3'-phosphate is the primary force stabilizing the specific binding of PAPS.  相似文献   

5.
The missense mutation Arg-120 to Gly (R120G) in the human alphaBeta-crystallin sequence has been reported to be associated with autosomal dominant myopathy, cardiomyopathy, and cataract. Previous studies of the mutant showed a significant ability to aggregate in cultured cells and an increased oligomeric size coupled to an important loss of the chaperone-like activity in vitro. The aim of this study was to further analyze the role of the R120 residue in the structural and functional properties of alphaBeta-crystallin. The following mutants were generated, Arg-120 to Gly (R120G), Cys (R120C), Lys (R120K), and Asp (R120D). In cellulo, after expression in two cultured cell lines, NIH-3T3 and Cos-7, the capacity of the wild-type and mutant crystallins to aggregate was evaluated and the protein location was determined by immunofluorescence. In vitro, the wild-type and mutant crystallins were expressed in Escherichia coli cells, purified by size exclusion chromatography, and characterized using dynamic light scattering, electron microscopy, and chaperone-like activity assays. Aggregate sizes in cellulo and in vitro were analyzed. The whole of the data showed that the preservation of an Arg residue at position 120 of alphaBeta-crystallin is critical for the structural and functional integrity of the protein and that each mutation results in specific changes in both structural and functional characteristics.  相似文献   

6.
We have recorded (13)C NMR spectra of [3-(13)C]Ala-labeled wild-type bacteriorhodopsin (bR) and its mutants at Arg(82), Asp(85), Glu(194), and Glu(204) along the extracellular proton transfer chain. The upfield and downfield displacements of the single carbon signals of Ala(196) (in the F-G loop) and Ala(126) (at the extracellular end of helix D), respectively, revealed conformational differences in E194D, E194Q, and E204Q from the wild type. The same kind of conformational change at Ala(126) was noted also in the Y83F mutant, which lacks the van der Waals contact between Tyr(83) and Ala(126) present in the wild type. The absence of a negative charge at Asp(85) in the site-directed mutant D85N induced global conformational changes, as manifested in displacements or suppression of peaks from the transmembrane helices, cytoplasmic loops, etc., as well as the local changes at Ala(126) and Ala(196) seen in the other mutants. Unexpectedly, no conformational change at Ala(126) was observed in R82Q (even though Asp(85) is protonated at pH 6) or in D85N/R82Q. The changes induced in the Ala(126) signal when Asp(85) is uncharged could be interpreted therefore in terms of displacement of the positive charge of Arg(82) toward Tyr(83), where Ala(126) is located. It is possible that disruption of the proton transfer chain after protonation of Asp(85) in the photocycle could cause the same kind of conformational change we detect at Ala(196) and Ala(126). If so, the latter change would be also the result of rearrangement of the side chain of Arg(82).  相似文献   

7.
A Yamaguchi  M Nakatani  T Sawai 《Biochemistry》1992,31(35):8344-8348
Of the 16 acidic amino acid residues located in the hydrophilic region of the metal-tetracycline/H+ antiporter of transposon Tn10, five glutamic acids and three aspartic acids are conserved among the tetracycline/H+ antiporters of Gram-negative bacteria. When these conserved acidic residues were each replaced by a neutral polar residue, glutamine or asparagine, only the Asp66 substitution mutants completely lost their transport activity. The substitution of Glu274, Asp120, Glu181, or Asp38 caused significant reduction of the transport activity, whereas the substitution of the other three residues had no detectable effect on the activity. These findings led to the conclusion that only Asp66 is essential for the transport function.  相似文献   

8.
The tetracycline resistance gene of pBR322 encodes a 41-kDa inner membrane protein (TetA) that acts as a tetracycline/H+ antiporter. Based on hydrophobicity profiles, we identified 12 potential transmembrane segments in TetA. We used oligonucleotide deletion mutagenesis to fuse alkaline phosphatase (PhoA) to the C-terminal edge of each of the predicted periplasmic and cytoplasmic segments of TetA. In general, the PhoA activities of the TetA-PhoA fusions support a TetA topology model consisting of 12 transmembrane segments with the N and C termini in the cytoplasm. However, several TetA-PhoA fusions have unexpected properties. One PhoA fusion to a predicted cytoplasmic segment (C6) has high activity. However, previous protease accessibility studies on the related Tn10 TetA protein indicated that C6 is cytoplasmically localized as predicted (Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670). PhoA fusions to three predicted periplasmic segments (P1, P2, and P5) have low to intermediate activity. In each case, the preceding transmembrane segment (TM1, TM3, and TM9) contains an aspartate (Asp17, Asp86, and Asp287). We show that these aspartates act like signal sequence mutations for PhoA export: (i) Asp----Ala mutations increase the PhoA activity of fusions to P1, P2, and P5. (ii) The signal sequence mutation suppressor prlA402 increases the PhoA activity of these same fusions. We also show that the aspartates in TM1, TM3, and TM9 are critical for wild-type TetA function; they are conserved in related TetA proteins and Asp----Ala mutations reduce or eliminate tetracycline resistance. The properties of the anomalous TetA-PhoA fusions suggest that TetA sequences C-terminal to some cytoplasmic and periplasmic segments are required for the proper localization of those segments, i.e. long range interactions may be more important in determining the membrane topology of TetA than suggested in some general models.  相似文献   

9.
Equilibrative nucleoside transporters encompass two conserved, charged residues that occur within predicted transmembrane domain 8. To assess the role of these "signature" residues in transporter function, the Asp389 and Arg393 residues within the LdNT2 nucleoside transporter from Leishmania donovani were mutated and the resultant phenotypes evaluated after transfection into Delta ldnt2 parasites. Whereas an R393K mutant retained transporter activity similar to that of wild type LdNT2, the R393L, D389E, and D389N mutations resulted in dramatic losses of transport capability. Tagging the wild type and mutant ldnt2 proteins with green fluorescent protein demonstrated that the D389N and D389E mutants targeted properly to the parasite cell surface and flagellum, whereas the expression of R393L at the cell surface was profoundly compromised. To test whether Asp389 and Arg393 interact, a series of mutants was generated, D389R/R393R, D389D/R393D, and D389R/R393D, within the green fluorescent protein-tagged LdNT2 construct. Although all of these ldnt2 mutants were transport-deficient, D389R/R393D localized properly to the plasma membrane, while neither D389R/R393R nor D389D/R393D could be detected. Moreover, a transport-incompetent D389N/R393N double ldnt2 mutant also localized to the parasite membrane, whereas a D389L/R393L ldnt2 mutant did not, suggesting that an interaction between residues 389 and 393 may be involved in LdNT2 membrane targeting. These studies establish genetically that Asp389 is critical for optimal transporter function and that a positively charged or polar residue at Arg393 is essential for proper expression of LdNT2 at the plasma membrane.  相似文献   

10.
The transposon Tn10-encoded tetracycline resistance protein functions as a metal-tetracycline/H+ antiporter (Yamaguchi, A., Udagawa, T., and Sawai, T. (1990) J. Biol. Chem. 265, 4809-4813). The Ser65-Asp66 dipeptide is conserved in all known tetracycline antiporter proteins and is an important target for site-directed mutagenesis. When Asp66 was replaced by Asn, the transport activity was completely lost, whereas when it was replaced by Glu, the activity was reduced to 10% of the wild-type level, indicating that a negative charge at position 66 is essential for tetracycline transport. Replacement of Ser65 by Cys or Ala, in contrast, caused only a minor change in tetracycline transport activity. However, the Cys65 mutant antiporter was sensitive to sulfhydryl reagents. Complete inactivation of the Cys65 antiporter by N-ethylmaleimide was not prevented by the substrate. A less bulky reagent, methyl methanethiosulfonate, caused partial inactivation of the Cys65 antiporter without changing its affinity to the substrate. These results indicate that a region including the dipeptide plays an important role in metal-tetracycline transport except for substrate binding. It may act as a gate which opens on the charge-charge interaction between Asp66 and the metal-tetracycline.  相似文献   

11.
The crystal structure of the Na+-coupled melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) demonstrates that MelB is a member of the major facilitator superfamily of transporters. Arg residues at positions 295, 141, and 363 are involved in interdomain interactions at the cytoplasmic side by governing three clusters of electrostatic/polar interactions. Insertion of (one at a time) Glu, Leu, Gln, or Cys at positions R295, R141, and R363, or Lys at position R295, inhibits active transport of melibiose to a level of 2 to 20% of the value for wild-type (WT) MelBSt, with little effect on binding affinities for both sugar and Na+. Interestingly, a spontaneous suppressor, D35E (periplasmic end of helix I), was isolated from the R363Q MelBSt mutant. Introduction of the D35E mutation in each of the mutants at R295, R141 (except R141E), or R363 rescues melibiose transport to up to 91% of the WT value. Single-site mutations for the pair of D35 and R175 (periplasmic end of helix VI) were constructed by replacing Asp with Glu, Gln, or Cys and R175 with Gln, Asn, or Cys. All mutants with mutations at R175 are active, indicating that a positive charge at R175 is not necessary. Mutant D35E shows reduced transport; D35Q and D35C are nearly inactivated. Surprisingly, the D35Q mutation partially rescues both R141C and R295Q mutations. The data support the idea that Arg at position 295 and a positive charge at positions 141 and 363 are required for melibiose transport catalyzed by MelBSt, and their mutation inhibits conformational cycling, which is suppressed by a minor modification at the opposite side of the membrane.  相似文献   

12.
Sahin-Tóth M  Kaback HR 《Biochemistry》2000,39(20):6170-6175
The sucrose (CscB) permease is the only member of the oligosaccharide:H(+) symporter family in the Major Facilitator Superfamily that transports sucrose but not lactose or other galactosides. In lactose permease (lac permease), the most studied member of the family, three residues have been shown to participate in galactoside binding: Cys148 hydrophobically interacts with the galactosyl ring, while Glu126 and Arg144 are charge paired and form H-bonds with specific galactosyl OH groups. In the present study, the role of the corresponding residues in sucrose permease, Asp126, Arg144, and Ser148, is investigated using a functional Cys-less mutant (see preceding paper). Replacement of Ser148 with Cys has no significant effect on transport activity or expression, but transport becomes highly sensitive to the sulfhydryl reagent N-ethylmaleimide (NEM) in a manner similar to that of lac permease. However, in contrast to lac permease, substrate affords no protection whatsoever against NEM inactivation of transport or alkylation with [(14)C]NEM. Neutral (Ala, Cys) mutations of Asp126 and Arg144 abolish sucrose transport, while membrane expression is not affected. Similarly, combination of two Ala mutations within the same molecule (Asp126-->Ala/Arg144-->Ala) yields normally expressed, but completely inactive permease. Conservative replacements result in highly active molecules: Asp126-->Glu permease catalyzes sucrose transport comparable to Cys-less permease, while mutant Arg144-->Lys exhibits decreased but significant activity. The observations demonstrate that charge pair Asp126-Arg144 plays an essential role in sucrose transport and suggest that the overall architecture of the substrate binding sites is conserved between sucrose and lac permeases.  相似文献   

13.
Three conserved aspartyl residues located in the putative transmembrane helices in the Tn10-encoded metal-tetracycline/H+ antiporter were replaced by Asn, Lys, or Glu with oligonucleotide-directed site-specific mutagenesis. Replacement of Asp84 or Asp15 by Asn or Lys caused a severe defect in tetracycline transport activity, however, the Glu84 and Glu15 mutants retained 150 and 40% of the wild type activity, respectively, indicating the critical role of the negative charge. The increase in the activity of the Glu84 mutant was due to an increase in the affinity for the substrate. H+/tetracycline coupling was intact in these mutants, including Asn and Lys mutants. On the other hand, all of the Asp285-substitution mutants showed a severe defect in tetracycline transport activity and a complete lack of tetracycline-coupled H+ transport. However, since in vivo tests showed the tetracycline resistance for the Glu285 mutant, a negative charge in position 285 plays some role in maintaining the possible down-hill and/or low affinity efflux of accumulated tetracycline from intact cells. Similar work was done for Asp365, and here the Asn and Glu mutants showed decreased but high activity, while the Lys mutant was only marginally active (5%), indicating that a negative charge is not so demanding in position 365, possibly because it is not in the membrane.  相似文献   

14.
The 3C-like protease of the Chiba virus, a Norwalk-like virus, is one of the chymotrypsin-like proteases. To identify active-site amino acid residues in this protease, 37 charged amino acid residues and a putative nucleophile, Cys139, within the GDCG sequence were individually replaced with Ala in the 3BC precursor, followed by expression in Escherichia coli, where the active 3C-like protease would cleave 3BC into 3B (VPg) and 3C (protease). Among 38 Ala mutants, 7 mutants (R8A, H30A, K88A, R89A, D138A, C139A, and H157A) completely or nearly completely lost the proteolytic activity. Cys139 was replaceable only with Ser, suggesting that an SH or OH group in the less bulky side chain was required for the side chain of the residue at position 139. His30, Arg89, and Asp138 could not be replaced with any other amino acids. Although Arg8 was also not replaceable for the 3B/3C cleavage and the 3C/3D cleavage, the N-terminal truncated mutant devoid of Arg8 significantly cleaved 3CD into 3C and 3D (polymerase), indicating that Arg8 itself was not directly involved in the proteolytic cleavage. As for position 88, a positively charged residue was required because the Arg mutant showed significant activity. As deduced by the X-ray structure of the hepatitis A virus 3C protease, Arg8, Lys88, and Arg89 are far away from the active site, and the side chain of Asp138 is directed away from the active site. Therefore, these are not catalytic residues. On the other hand, all of the mutants of His157 in the S1 specificity pocket tended to retain very slight activity, suggesting a decreased level of substrate recognition. These results, together with a sequence alignment with the picornavirus 3C proteases, indicate that His30 and Cys139 are active-site residues, forming a catalytic dyad without a carboxylate directly participating in the proteolysis.  相似文献   

15.
The plasma membrane Pma1 H+-ATPase of the yeast Saccharomyces cerevisiae contains conserved residue Asp739 located at the interface of transmembrane segment M6 and the cytosol. Its replacement by Asn or Val (Petrov et al. (2000) J. Biol. Chem., 275, 15709-15716) or by Ala (Miranda et al. (2011) Biochim. Biophys. Acta, 1808, 1781-1789) caused complete blockage of biogenesis of the enzyme, which did not reach secretory vesicles. It was proposed that a strong ionic bond (salt bridge) could be formed between this residue and positively charged residue(s) in close proximity, and the replacement D739A disrupted this bond. Based on a 3D homology model of the enzyme, it was suggested that the conserved Arg811 located in close proximity to Asp739 could be such stabilizing residue. To test this suggestion, single mutants with substituted Asp739 (D739V, D739N, D739A, and D739R) and Arg811 (R811L, R811M, R811A, and R811D) as well as double mutants carrying charge-neutralizing (D739A/R811A) or charge-swapping (D739R/R811D) substitutions were used. Expression of ATPases with single substitutions R811A and R811D were 38-63%, and their activities were 29-30% of the wild type level; ATP hydrolysis and H+ transport in these enzymes were essentially uncoupled. For the other substitutions including the double mutations, the biogenesis of the enzyme was practically blocked. These data confirm the important role of Asp739 and Arg811 residues for the biogenesis and function of the enzyme, suggesting their importance for defining H+ transport determinants but ruling out, however, the existence of a strong ionic bond (salt bridge) between these two residues and/or importance of such bridge for structure–function relationships in Pma1 H+-ATPase.  相似文献   

16.
Conserved motif C, identified within members of the major facilitator superfamily (MFS) of transport proteins that mediate drug export, was examined in the tetracycline resistance efflux protein TetA(K) from Staphylococcus aureus; motif C is contained within transmembrane segment 5. Using site-directed mutagenesis, the importance of the conserved glycine (G151, G155, G159, and G160) and proline (P156) residues within this motif was investigated. Over 40 individual amino acid replacements were introduced; however, only alanine and serine substitutions for glycine at G151, G155, and G160 were found to retain significant levels of tetracycline resistance and transport activity in cells expressing mutant proteins. Notably, P156 and G159 appear to be crucial, as amino acid replacements at these positions either significantly reduced or abolished tetracycline/H(+) activity. The highly conserved nature of motif C and its distribution throughout drug exporters imply that the residues of motif C play a similar role in all MFS proteins that function as antiporters.  相似文献   

17.
The multidrug resistance protein MRP1 is an ATP-dependent transporter of organic anions and chemotherapeutic agents. A significant number of ionizable amino acids are found in or proximal to the 17 transmembrane (TM) helices of MRP1, and we have investigated 6 of these at the cytoplasmic interface of TM13-17 for their role in MRP1 expression and transport activity. Opposite charge substitutions of TM13 Arg(1046) and TM15 Arg(1131) did not alter MRP1 expression nor did they substantially affect activity. In contrast, opposite charge substitutions of TM16 Arg(1202) and Glu(1204) reduced protein expression by >80%; however, MRP1 expression was not affected when Arg(1202) and Glu(1204) were replaced with neutral or same-charge residues. In addition, organic anion transport levels of the R1202L, R1202G, and R1202K mutants were comparable with wild-type MRP1. In contrast, organic anion transport by E1204L was substantially reduced, whereas transport by E1204D was comparable with wild-type MRP1, with the notable exception of GSH. Opposite charge substitutions of TM16 Arg(1197) and TM17 Arg(1249) did not affect MRP1 expression but substantially reduced transport. Mutants containing like-charge substitutions of Arg(1197) or Arg(1249) were also transport-inactive and no longer bound leukotriene C(4). In contrast, substrate binding by the transport-compromised E1204L mutant remained intact. Furthermore, vanadate-induced trapping of azido-ADP by E1204L was dramatically increased, indicating that this mutation may cause a partial uncoupling of the catalytic and transport activities of MRP1. Thus, Glu(1204) serves a dual role in membrane expression of MRP1 and a step in its catalytic cycle subsequent to initial substrate binding.  相似文献   

18.
Our previous study has suggested that mutation of the amino acid residue Asp102 has a significant effect on the fumarate-mediated activation of human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME). In this paper, we examine the cationic amino acid residue Arg98, which is adjacent to Asp102 and is highly conserved in most m-NAD(P)-MEs. A series of R98/D102 mutants were created to examine the possible interactions between Arg98 and Asp102 using the double-mutant cycle analysis. Kinetic analysis revealed that the catalytic efficiency of the enzyme was severely affected by mutating both Arg98 and Asp102 residues. However, the binding energy of these mutant enzymes to fumarate as determined by analysis of the KA,Fum values, show insignificant differences, indicating that the mutation of Arg98 and Asp102 did not cause a significant decrease in the binding affinity of fumarate. The overall coupling energies for R98K/D102N as determined by analysis of the kcat/Km and KA,Fum values were −2.95 and −0.32 kcal/mol, respectively. According to these results, we conclude that substitution of both Arg98 and Asp102 residues has a synergistic effect on the catalytic ability of the enzyme.  相似文献   

19.
The staphylococcal TetA(K) tetracycline exporter is classified within the major facilitator superfamily of transport proteins and contains 14 alpha-helical transmembrane segments (TMS). Using cysteine-scanning mutagenesis, 27 amino acid residues across and flanking putative TMS 10 of the TetA(K) transporter were individually replaced with cysteine. The level of solvent accessibility to each of the targeted amino acid positions was determined as a measure of fluorescein maleimide reactivity and demonstrated that TMS 10 of TetA(K) has a cytoplasmic boundary at G313 and is likely to extend from at least V298 on the periplasmic side. TMS 10 was found to be amphiphilic containing at least partially solvent accessible amino acid residues along the length of one helical face, suggesting that this helix may line a solvent-exposed channel. Functional analyses of these cysteine mutants demonstrated a significant role for a number of amino acid residues, including a predominance of glycine residues which were further analyzed by alanine substitution. These residues are postulated to allow interhelical interactions between TMS 10 and distal parts of TetA(K) that are likely to be required for the tetracycline transport mechanism in TetA(K) and may be a general feature required by bacterial tetracycline transporters for activity.  相似文献   

20.
The tetracycline resistance proteins (TetA) of gram-negative bacteria are secondary active transport proteins that contain buried charged amino acids that are important for tetracycline transport. Earlier studies have shown that insertion of TetA proteins into the cytoplasmic membrane is mediated by helical hairpin pairs of transmembrane (TM) segments. However, whether helical hairpins direct spontaneous insertion of TetA or are required instead for its interaction with the cellular secretion (Sec) machinery is unknown. To gain insight into how TetA proteins are inserted into the membrane, we have investigated how tolerant the class C TetA protein encoded by plasmid pBR322 is to placement of charged residues in TM segments. The results show that the great majority of charge substitutions do not interfere with insertion even when placed at locations that cannot be shielded internally within helical hairpins. The only mutations that frequently block insertion are proline substitutions, which may interfere with helical hairpin folding. The ability of TetA to broadly tolerate charge substitutions indicates that the Sec machinery assists in its insertion into the membrane. The results also demonstrate that it is feasible to engineer charged residues into the interior of TetA proteins for the purpose of structure-function analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号