首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique has been developed for the rapid and simple measurement of ribulose 1,5-bisphosphate from isolated spinach chloroplasts. The endogenous ribulose bisphosphate was detected enzymically using (14)CO(2) and ribulose bisphosphate carboxylase/oxygenase released from the chloroplasts. Ribulose 5-phosphate kinase was inhibited with 0.4 to 0.6 millimolar 2,6-dichlorophenol-indophenol and 4 micromolar carbonyl cyanide m-chlorophenylhydrazone. Phosphoenolpyruvate carboxylase activity was low with washed chloroplasts and its labeled product, [(14)C]oxalacetate, was destroyed by heating with 1.0 n HCl at 90 C. The assay method was linear from 0.05 to 0.87 nanomoles ribulose bisphosphate per milliliter. The latter value was determined with chloroplast material having 44 micrograms of chlorophyll per milliliter. This technique was simple and direct, used less chloroplast material, yet provided results comparable to a previously described enzymic technique in which ribulose bisphosphate was determined after the precipitation of chloroplast proteins by perchloric acid.  相似文献   

2.
Among the several strains of halobacteria grown heterotrophically, ribulose bisphosphate carboxylase activity was detected in those which accumulate poly (-hydroxybutyrate), viz. Haloferax mediterranei, Haloferax volcanii and Halobacterium marismortui. In H. mediterranei, the activity was present in cell extracts prepared after growth on a variety of carbohydrates. The ribulose bisphosphate carboxylase activity in H. mediterranei was inhibited by carboxyarabinitol bisphosphate, and the enzyme cross-reacted with antibodies raised against the spinach enzyme. CO2 fixation by cell extract was stimulated by the addition of ATP and NADH. Preliminary data suggested that hydrogen could be a possible reductant.Abbreviations RuBP ribulose bisphosphate - Ru5P ribulose 5-phosphate - R5P ribose 5-phosphate - CABP carboxyarabinitol bisphosphate - PHB poly (-hydroxybutyrate) - DTT dithiothreitol  相似文献   

3.
Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.  相似文献   

4.
The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.  相似文献   

5.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

6.
Further evidence for time-dependent interconversions between active and inactive states of ribulose 1,5-bisphosphate carboxylase is presented. It was found that ribulose bisphosphate oxygenase and ribulose bisphosphate carboxylase could be totally inactivated by excluding CO2 and Mg2+ during dialysis of the enzyme at 4 degrees C. When initially inactive enzyme was assayed, the rate of reaction continually increased with time, and the rate was inversely related to the ribulose bisphosphare concentration. The initial rate of fully activated enzyme showed normal Michaelis-Menten kinetics with respect to ribulose bisphosphate (Km = 10muM). Activation was shown to depend on both CO2 and Mg2+ concentrations, with equilibrium constants for activation of about 100muM and 1 mM respectively. In contrast with activation, catalysis appeared to be independent of Mg2+ concentration, but dependent on CO2 concentration, with a Km(CO2) of about 10muM. By studying activation and de-activation of ribulose bisphosphate carboxylase as a function of CO2 and Mg2+ concentrations, the values of the kinetic constants for these actions have been determined. We propose a model for activation and catalysis of ribulose bisphosphate carboxylase: (see book) where E represents free inactive enzyme; complex in parentheses, activated enzyme; R, ribulose bisphosphate; M, Mg2+; C, CO2; P, the product. We propose that ribulose bisphosphate can bind to both the active and inactive forms of the enzyme, and slow inter-conversion between the two states occurs.  相似文献   

7.
Wheat (Triticum aestivum L. cv Albis) was grown in open-top chambers in the field and fumigated daily with charcoal-filtered air (0.015 microliters per liter O3), nonfiltered air (0.03 microliters per liter O3), and air enriched with either 0.07 or 0.10 microliters per liter ozone (seasonal 8 hour/day [9 am-5 pm] mean ozone concentration from June 1 until July 10, 1987). Photosynthetic 14CO2 uptake was measured in situ. Net photosynthesis, dark respiration, and CO2 compensation concentration at 2 and 21% O2 were measured in the laboratory. Leaf segments were freeze-clamped in situ for the determination of the steady state levels of ribulose 1,5-bisphosphate, 3-phosphoglycerate, triose-phosphate, ATP, ADP, AMP, and activity of ribulose, 1,5-bisphosphate carboxylase/oxygenase. Photosynthesis of flag leaves was highest in filtered air and decreased in response to increasing mean ozone concentration. CO2 compensation concentration and the ratio of dark respiration to net photosynthesis increased with ozone concentration. The decrease in photosynthesis was associated with a decrease in chlorophyll, soluble protein, ribulose bisphosphate carboxylase/oxygenase activity, ribulose bisphosphate, and adenylates. No decrease was found for triose-phosphate and 3-phosphoglycerate. The ratio of ATP to ADP and of triosephosphate to 3-phosphoglycerate were increased suggesting that photosynthesis was limited by pentose phosphate reductive cycle activity. No limitation occurred due to decreased access of CO2 to photosynthetic cells since the decrease in stomatal conductance with increasing ozone concentration did not account for the decrease in photosynthesis. Ozonestressed leaves showed an increased degree of activation of ribulose bisphosphate carboxylase/oxygenase and a decreased ratio of ribulose bisphosphate to initial activity of ribulose bisphosphate carboxylase/oxygenase. Nevertheless, it is suggested that photosynthesis in ozone stressed leaves is limited by ribulose bisphosphate carboxylation possibly due to an effect of ozone on the catalysis by ribulose bisphosphate carboxylase/oxygenase.  相似文献   

8.
The discovery of Rubisco activase – yet another story of serendipity   总被引:1,自引:0,他引:1  
A brief history of Rubisco (ribulose bisphosphate carboxylase oxygenase) research and the events leading to the discovery and initial characterization of Rubisco activase are described. Key to the discovery was the chance isolation of a novel Arabidopsis photosynthesis mutant. The characteristics of the mutant suggested that activation of Rubisco was not a spontaneous process in vivo, but involved a heritable factor. The search for the putative factor by 2D electrophoresis identified two polypeptides, genetically linked to Rubisco activation, that were missing in chloroplasts from the mutant. An assay for the activity of these polypeptides, which were given the name Rubisco activase, was developed after realizing the importance of including ribulose bisphosphate (RuBP) in the assay. The requirement for ATP and the subsequent identification of activase as an ATPase came about fortuitously, the result of a RuBP preparation that was contaminated with adenine nucleotides. Finally, the ability of activase to relieve inhibition of the endogenous Rubisco inhibitor, 2-carboxyarabinitol 1-phosphate, provided an early indication of the mechanism by which activase regulates Rubisco. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Rhizobium japonicum CJ1 was capable of growing using formate as the sole source of carbon and energy. During aerobic growth on formate a cytoplasmic NAD+-dependent formate dehydrogenase and ribulose bisphosphate carboxylase activity was demonstrated in cell-free extracts, but hydrogenase enzyme activity could not be detected. Under microaerobic growth conditions either formate or hydrogen metabolism could separately or together support ribulose bisphosphate carboxylase-dependent CO2 fixation. A number of R. japonicum strains defective in hydrogen uptake activity were shown to metabolise formate and induce ribulose bisphosphate carboxylase activity. The induction and regulation of ribulose bisphosphate carboxylase is discussed.Abbreviations hup hydrogen uptake - MOPS 3-(N-morpholino)-propanesulphonate - TSA tryptone soya agar - RuBP ribulose 1,5-bisphosphate - FDH formate dehydrogenase  相似文献   

10.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

11.
Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.  相似文献   

12.
Pierce, J. 1988. Prospects for manipulating the substrate specificity of ribulose bisphosphate carboxylase/oxygenase. - Physiol. Plant. 72: 690–698.
The idea of enhancing plant productivity by minimizing the apparently wasteful process of photorespiration has been an enduring one. Since the relative fluxes of carbon through the competing pathways of photosynthesis and photorespiration are determined by the kinetic properties of a single enzyme, ribulose bisphosphate carboxylase/oxygenase, it has been conjectured that genetic modification of this protein could provide more productive plants. Recent advances in techniques for studying ribulose bisphosphate carboxylase/oxygenase hold promise for determining whether such modifications will prove possible.  相似文献   

13.
Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from 0.05 to 1.40 mM for the carboxylase reaction and by a similar amount for the oxygenase reaction. The Ki(O2) increased from 0.17 to 6.00 mM, but the ratio of carboxylase activity to oxygenase activity was scarcely affected by the change in amino acid. The binding of the transition state analogue 2-carboxyribitol 1,5-bisphosphate was reversible in the mutant and essentially irreversible in the wild type enzyme. Inhibition by fructose bisphosphate, competitive with ribulose bisphosphate, was slightly increased in the mutant enzyme. These data suggest that the change of the residue from methionine to leucine decreases the stability of the enediol reaction intermediate.  相似文献   

14.
E. Roscher  K. Zetsche 《Planta》1986,167(4):582-586
In the green alga Chlorogonium elongatum the promoting effect of light on the synthesis of ribulose bisphosphate carboxylase/oxygenase (RuBPCase) is mainly caused by blue light of wavelengths between 430 nm and 510 nm, with a maximum effect at about 460 nm. Blue light also causes an increase in the amounts of the mRNAs for the large and the small subunits of the enzyme. Furthermore, the concentration of RuBPCase is affected by the light energy fluence rate. The rate of synthesis as well as the maximal obtainable concentration of the enzyme are functions of the light energy fluence rate up to 26 W·m-2. No further increase occurs beyond that intensity. The quantity of irradiation also alters the concentrations of the subunit mRNAs. The results indicate that the changes in the mRNA levels are the major regulatory steps in the light-dependent synthesis of the RuBPCase enzyme.Abbreviations LSU large subunit - pSSU precursor of the small subunit - RuBPCase ribulose bisphosphate carboxylase/oxygenase EC 4.1.1.39 Dedicated to Prof. Dr. E. Bünning on the occasion of his 80 th birthday  相似文献   

15.
When assayedin vitro, the activity of the photosynthetic enzyme ribulose 1,5 bisphosphate carboxylase/oxygenase is both enhanced and protected from spontaneous decay by exogenous proteins such as hemoglobin, serum albumin, and aldolase. Other proteins and amino acids tested are either ineffective (lysozyme, ferritin, lysine, and cysteine) or afford only partial protection (catalase, glycine, and phenylalanine). Protective proteins do not bind to, or exchange disulfides with, ribulose 1,5 bisphosphate carboxylase/oxygenase. Since their effect can be mimicked by reductively treated detergents such as Triton X-100, it appears that proteins protect from decay by quenching the spontaneous oxidative degradation and inhibiting surface adsorption which could lead to enzyme unfolding. Release of adsorbed molecules from the container surface is likely to be the cause of carboxylase activity enhancement.  相似文献   

16.
The effects of temperature on ribulose bisphosphate carboxylase activity were studied in two tomato ( Lycopersicon esculentum Mill.) cultivars which differed in sensitivity to high temperatures. The heat tolerant cultivar, Saladette, had a smaller reduction in photosynthesis and a smaller increase in mesophyll resistance then the sensitive cultivar Roma VF, after 24 h at 35 to 40°C. One hour in vitro treatments at 50°C decreased the activity of ribulose bisphosphate carboxylase extracted from Roma VF by 75%, while Saladette was not affected. Heat stress to the entire plant caused greater inhibition of ribulose bisphosphate carboxylase in the heat sensitive cultivar. Ribulose bisphosphate carboxylase activity in both cultivars decreased with heat treatment but recovered under normal temperatures. Ribulose bisphosphate oxygenase activity decreased similarly in both cultivars under 37/18°C day/night temperatures, which resulted in an apparent change in the relative carboxylase/oxygenase activity of the two cultivars. Carbonic anhydrase activity was slightly greater in Saladette than in Roma VF but no significant decrease in activity was observed in plants exposed to high temperatures.  相似文献   

17.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

18.
Irradiation of buoyant, gas-vacuolate cells of the cyanobacteriumMicrocystis aeruginosa by 5·104 Wm–2 of blue light for 1 h caused a 5% loss of extractable ribulose bisphosphate carboxylase activity compared to dark and red-light controls. Ribulose bisphosphate carboxylase activity was unaffected by blue light in similar experiments conducted with cells containing collapsed gas vacuoles.Abbreviations RuBP Ribulose 1,5-bis-phosphate carboxylase  相似文献   

19.
A pulse treatment of Norway spruce (Picea abies (L.) Karst) embryos with the cytokinin N6-benzyladenine induces the formation of adventitious buds from subepidermal cells in the hypocotyl and cotyledons. In addition the treatment also inhibits elongation growth, a key process during germination. In this report we demonstrate that these effects on development of the plant are associated with a suppression of the accumulation of several major chloroplast proteins during germination. These proteins include the large subunit of ribulose bisphosphate/carboxylase oxygenase, two subunits of the chloroplast ATPase, protochlorophyllide reductase and a 23000-Mr component of photosystem II. For two nuclear-encoded proteins, the small subunit of ribulose bisphosphate carboxylase/oxygenase and the light-harvesting chlorophyll a/b-binding protein, a corresponding suppression of the increase in the steady-state amounts of mRNA is recorded. The suppression of chloroplast protein synthesis is consistant with the previously documented delay in greening that results from cytokinin treatment, but the effect is opposite to that found in other plants, where cytokinins promote the synthesis of chloroplast proteins, and stimulate chloroplast biogenesis. We believe that this difference is explained by the cytokinin primarily suppressing organ development, and a strict dependance of chloroplast biogenesis on the developmental state of the organs.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - CF1 coupling-factor 1 of chloroplast ATPase - LHCP light-harvesting chlorophyll a/b-binding protein - LSU large subunit of Rubisco - NADPH-protochlorophyllide oxidoreductase Pchlide reductase - SDS sodium dodecyl sulfate - SSU small subunit of Rubisco We thank K. Hutchison (Dept. of Biochemistry, University of Maine, Orono, Maine, USA) and P. Gustafsson (Dept. of Plant Physiology, University of Umeå, Sweden) for providing the Larix and Pinus clones, and M. Ryberg (Dept. of Plant Physiology, University of Göteborg, Sweden), R. Ölmüller (Botanisches Institut, Universität München, FRG) and W. Lockau (Institut für Botanik, Universität Regensburg, FRG), for the gift of antisera towards Pchlide reductase, RuBPCase and LHCP, and ATPase, respectively. Supported by the Swedish Council for Forestry and Agricultural Research and the Swedish Natural Sciences Research Council.  相似文献   

20.
In some plants, 2-carboxy-d-arabinitol 1-phosphate (CA 1P) is tightly bound to catalytic sites of ribulose, 1,5-bisphosphate carboxylase/oxygenase (rubisco). This inhibitor's tight binding property results from its close resemblance to the transition state intermediate of the carboxylase reaction. Amounts of CA 1P present in leaves varies with light level, giving CA 1P characteristics of a diurnal modulator of rubisco activity. Recently, a specific phosphatase was found that degrades CA 1P, providing a mechanism to account for its disappearance in the light. The route of synthesis of CA 1P is not known, but could involve the branched chain sugar, hamamelose. There appear to be two means for diurnal regulation of the number of catalytic sites on rubisco: carbamylation mediated by the enzyme, rubisco activase, and binding of CA 1P. While strong evidence exists for the involvement of rubisco activase in rubisco regulation, the significance of CA 1P in rubisco regulation is enigmatic, given the lack of general occurrence of CA 1P in plant species. Alternatively, CA 1P may have a role in preventing the binding of metabolites to rubisco during the night and the noncatalytic binding of ribulose bisphosphate in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号