首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian spermatogenesis is a complex process involving an intrinsic genetic program of germ cell-specific and -predominant genes. In the present study, we analyzed the Ly-1 reactive clone (Lyar) gene in the mouse. Lyar, which is known to be expressed abundantly in the testis, encodes a nucleolar protein that contains a LYAR-type C2HC zinc finger motif and three nuclear localization signals. We herein confirmed that Lyar is expressed predominantly in the testis, and further showed that this expression is specific to germ cells. Protein analyses with an anti-LYAR antibody demonstrated that the LYAR protein is present in spermatocytes and spermatids, but not in sperm. To assess the functional role of LYAR in vivo, we used a genetrap mutagenesis approach to establish a LYAR-null mouse model. Lyar mutant mice were born live and developed normally. Male mutant mice lacking LYAR were fully fertile and showed intact spermatogenesis. Taken together, our results demonstrate that LYAR is strongly preferred in male germ cells, but has a dispensable role in spermatogenesis and fertility.  相似文献   

2.
3.
Phthalate esters are considered endocrine disruptors that interfere with the endocrine balance and development of the mammalian testis. Mono-2-ethylhexyl phthalate (MEHP), the active metabolite of the ubiquitously used plasticizer di-2-ethylhexyl phthalate (DEHP), acts upon Sertoli cells as initial target. By subtractive cDNA libraries we identified genes deregulated as response to MEHP in primary cultures of mouse Sertoli cells. The expression of mouse stress inducible protein 1 (Stip1) was detected as upregulated as a result of MEHP exposure. Stip1 is a cochaperone protein that is homologous to the human heat shock cognate protein 70 (hsc70)/heat shock protein 90 (hsp90)-organizing protein (Hop). To assess the presence and localization of Stip1 in mouse testis and its potential role in stress defense, we studied the expression pattern of the Stip1 protein by immunohistochemistry and of the mRNA by in situ hybridization. Both the protein and the mRNA of Stip1 were mainly found in the cytoplasm of all types of spermatogonia and spermatocytes up till zygotene, the expression decreased during late pachytene and was very weak in diplotene spermatocytes and round spermatids. Interestingly, this expression pattern resembled the pattern of stress sensitivity of spermatogenic cells in that the most sensitive cell types show the weakest expression of Stip1. This suggests an important role for Stip1 in the ability of germ cells to survive in stress conditions including high temperatures.  相似文献   

4.
Summary

Whole testes of Acheta domesticus were maintained in vitro for up to 48 h. Development of sperm could not be induced in the penultimate stage testis irrespective of hormone influence. A partial stimulation of spermatogenesis in the ultimate stage testis was achieved using 10?6 M 20-hydroxyecdysone but completion of spermiogenesis was not seen.  相似文献   

5.
6.
The human trihydrophobin 1 (TH1) is a highly conserved and widely expressed protein. It is clear that TH1 serves as a new specific negative regulator of A-Raf kinase. In this study, we found that TH1 associated with A-Raf in mouse testis by using coimmunoprecipitation analysis. Then we characterized the gene expression of TH1 in mouse testis and analyzed the changes of TH1 protein during postnatal development. The protein expression of TH1 in mouse testis was further analyzed by immunohistochemistry staining. Strong signals were detected in the seminiferous tubules and the distribution patterns varied with the different ages of postnatal mouse testis. TH1 was distributed in spermatocytes and Sertoli cells at 2 weeks postnatal, and was abundant in spermatogonia at 8 weeks postnatal. Leydig cells were positive to TH1 throughout testicular development. A high expression of TH1 in both Leydig cells and mouse Leydig tumor cells (mLTC-1cells) was found to be concentrated in the cytoplasm. The colocalization of TH1 and A-Raf in mLTC-1 cells or in adult testis was also observable.  相似文献   

7.
8.
The walls of lobules in the testis of Ophidion sp. are composed of Scrtoli cells and young germinal cells (spermatogonia and spermatocytes). Spermatocytes are linked by cytoplasmic bridges. The associations of Sertoli cells and spermatocytes constitute true cysts. Meiosis takes place in the cysts. When meiosis is complete, cysts open. Spermatids are released into the lumen of the lobules and the cyloplasmic bridges break down. Spermiogenesis occurs in the lumen. Spermatids at various levels of spermiogenesis are then mixed with ripe spermatozoa. In teleosts we thus recognize two types of spermatogenesis: a cystic type where spermatogenesis is completed within cysts, and leads to synchronous development of germ-cells; and a semi-cystic type, where spermatogenesis occurs partly outside cysts. This may produce asynchronous spermatogenesis.  相似文献   

9.
10.
睾丸发育和精子生成相关miRNA研究进展   总被引:1,自引:0,他引:1  
冉茂良  陈斌  尹杰  杨岸奇  蒋明 《遗传》2014,36(7):646-654
MicroRNA(miRNA)是一类长约22nt的非编码小RNA, 广泛存在于各种生物中, 调节生物体生长、发育和凋亡等过程。研究表明, miRNA在人和动物睾丸发育及精子生成等过程也起着重要的调控作用。但miRNA在不同种属的睾丸组织及其不同发育时间段均存在特异性表达。此外, miRNA在动物精子生成过程中也存在时空特异性。文章综述了睾丸发育和精子生成过程中miRNA的差异性表达、表达调控以及一些miRNA对精子生成的调节作用, 旨在为睾丸miRNA的进一步研究提供参考, 为利用miRNA调控和促进种公畜精液品质提供研究思路。  相似文献   

11.
12.
人DDX36和小鼠Ddx36基因在成年睾丸组织中的表达研究   总被引:1,自引:1,他引:0  
果蝇是结构基因组学和功能基因组学研究的最为理想的一种模式生物,采用同源克隆的策略,应用生物信息学分析和实验技术相结合的方法分别从人和小鼠中克隆了同源于果蝇MLE蛋白的新基因DDX36和Ddx36。为进一步研究DDX36和Ddx36基因与精子发生的关系,再应用Northrn blotting,RT-PCR和组织原位杂交技术探讨了DDX36和Ddx36基因的表达情况,结果发现人DDX36和小鼠Ddx36基因在成年睾丸组织中高表达。初步证明DDX36和Ddx36基因在精子发生中亦可能发挥重要作用。  相似文献   

13.
Hormone-sensitive lipase (HSL, Lipe, E.C.3.1.1.3) functions as a triglyceride and cholesteryl esterase, supplying fatty acids, and cholesterol to cells. Gene-targeted HSL-deficient (HSL(-/-)) mice reveal abnormal spermatids and are infertile at 24 weeks after birth. The purpose of this study was to follow the evolution of spermatid abnormalities as HSL(-/-) mice age, characterize sperm motility in older HSL(-/-) mice, and determine if mice expressing a human testicular HSL transgene (HSL(-/-)ttg) produce normal motile sperm. In situ hybridization indicated that HSL is expressed exclusively in steps 5-16 spermatids, but not in Sertoli cells. In HSL(-/-) mice, abnormalities were evident in step 16 spermatids at 5 weeks after birth, with defects progressively increasing in spermatids with age. The defects included multinucleation of spermatids, abnormal shapes and a reduction of elongating spermatids. In older HSL(-/-) mice, sperm counts appeared reduced by 42%, but this value was lower because samples were compromised by the presence of small degenerating germ cells in addition to sperm, both of which appeared of similar size and density. Sperm motility was dramatically reduced with only 11% classified as motile in HSL(-/-) mice compared to 76-78% of sperm in wild-type and HSL(-/-)ttg mice. Sperm morphology, counts, and motility were normal in HSL(-/-)ttg mice, as was their fertility. Collectively, the data indicate that HSL deficiency results in abnormal spermatid development with defects arising at 5 weeks of age and progressively increasing at later ages. HSL(-/-) mice also show a dramatic reduction in sperm counts and motility and are infertile.  相似文献   

14.
To identify candidate genes for poor sperm morphology, we have screened for genes expressed during spermiogenesis. We identified 10 new members of the cysteine-rich perinuclear theca (CYPT) family showing that this family contains at least 15 members, which also includes the casein kinase II target genes. Based on similarity the CYPT sequences could be divided into two groups, Cypt1-10 and the novel members Cypt12-15. The 5'-end of the CYPT family is highly similar to exon1A and part of the first intron of Zfy2. Seven CYPT genes mapped to the X chromosome; six contained an intron and one was intron-less. One CYPT gene mapped to chromosome 3 and one mapped to chromosome 9 which were both intron-less. The upstream region of the CYPT family and Zfy2 genes is conserved. For some the conservation extended over a large region, however, only about 150 nucleotides is conserved among all CYPT members and Zfy2. Nevertheless, the short conserved promoter leads to essentially identical expression profiles for the CYPT family members and Zfy2, which was clearly different from the profile of Zfy1. Expression of the CYPT family and Zfy2 preceded the expression of other spermatid-specific genes such as the transition proteins and the protamines. In situ hybridization revealed a low expression in pachytene spermatocytes from stages IX-X followed by a strong upregulation in spermatids from stage VI with maximum expression in spermatids in stages VII-VIII. The CYPT family may function in the remodeling of the spermatid nucleus before condensation of the DNA.  相似文献   

15.
The four highly homologous members of the C‐terminal EH domain‐containing (EHD) protein family (EHD1‐4) regulate endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4−/− mice confirmed EHD4 deletion. Ehd4−/− mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (Day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (Day 31) were seen in the Ehd4−/− testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium, and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4−/− males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and EHD4 levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age‐dependent manner. We conclude that high levels of EHD1 in the adult Ehd4−/− testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of postmitotic and postmeiotic germ cells and implicate EHD protein‐mediated endocytic recycling as an important process in germ cell development and testis function. genesis 48:328–342, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The presence of stage-dependent occlusive junctions between adjacent Sertoli cells in the seminiferous epithelium of the crayfish testis was demonstrated by a lanthanum tracer study. The germinal epithelium did not appear to be compartmentalized, as evidenced by access of lanthanum to spermatogonia, spermatocytes, and spermatids. During late spermiogenesis, when encapsulated stage VI spermatids were concentrated in the center of an acinus, lanthanum was excluded apically, coincident with lumen formation. This is the first study examining occluding junctions using a barrier penetration method in the testis of a crustacean.  相似文献   

17.
Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays in wild-type and IL-6 knockout mice subjected to a cryolesion of the somatosensorial cortex and killed at 0, 1, 4, 8 and 16 days post-lesion. Overall gene expression was analyzed by using Affymetrix genechips/oligonucleotide arrays with approximately 12,400 probe sets corresponding to approximately 10,000 different murine genes (MG_U74Av2). A robust, conventional statistical method (two-way anova) was employed to select the genes significantly affected. An orderly pattern of gene responses was clearly detected, with genes being up- or down-regulated at specific timings consistent with the processes involved in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The results highlight the importance of IL-6 controlling the response of the brain to injury as well as the suitability of microarrays for identifying specific targets worthy of further study.  相似文献   

18.
The caecilians have evolved a unique pattern of cystic spermatogenesis in which cysts representing different stages in spermatogenesis coexist in a testis lobule. We examined unsettled issues relating to the organization of the caecilian testis lobules, including the occurrence of a fatty matrix, the possibility of both peripheral and central Sertoli cells, the origin of Sertoli cells from follicular cells, and the disengagement of older Sertoli cells to become loose central Sertoli cells. We subjected the testis of Ichthyophis tricolor (Ichthyophiidae) and Uraeotyphlus cf. narayani (Uraeotyphliidae) from the Western Ghats of Kerala, India, to light and transmission electron microscopic studies. Irrespective of the functional state of the testis, whether active or regressed, Sertoli cells constitute a permanent feature of the lobules. The tall Sertoli cells adherent to the basal lamina with basally located pleomorphic nuclei extend deeper into the lobule to meet at the core. There they provide for association of germ cells at different stages of differentiation, an aspect that has earlier been misconceived as the fatty matrix. Germ cells up to the 4-cell stage remain in the intercalating region of the Sertoli cells and they are located at the apices of the Sertoli cells from the 8-cell stage onwards. The developing germ cells are intimately associated with the Sertoli cell adherent to the basal lamina until spermiation. There are ameboid cells in the core of the lobules that appear to interact with the germ cells at the face opposite to their attachment with the Sertoli cells. Adherence of the Sertoli cells to the basal lamina is a permanent feature of the caecilian testicular lobules. The ameboid cells in the core are neither Sertoli cells nor their degeneration products.  相似文献   

19.
The term “Puberty”, socially known as “Adolescence” is the transitional period from juvenile life to adulthood with functional maturation of gonads and genital organs. In this process, some remarkable developmental changes occur in morphology, physiology, and behavior leading to reproductive competence. Despite sufficient levels of gonadotropins (luteinizing hormone [LH] and follicle‐stimulating hormone [FSH]), robust spermatogenesis is not initiated during infancy in primates due to the immaturity of testicular Sertoli cells. Recent studies suggest that developmental competence augmenting functional activities of receptors for androgen and FSH is acquired by Sertoli cells somewhere during the prolonged hypo‐gonadotropic juvenile period. This juvenile phase is terminated with the re‐awakening of hypothalamic Kisspeptin/Neurokinin B/Dynorphin neurons which induce the release of the gonadotropin‐releasing hormone leading to reactivation of the hypothalamo‐pituitary‐testicular axis at puberty. During this period of pubertal development, FSH and LH facilitate further maturation of testicular cells (Sertoli cells and Leydig cells) triggering robust differentiation of the spermatogonial cells, ensuing the spermatogenic onset. This review aims to precisely address the evolving concepts of the pubertal regulation of hormone production with the corresponding cooperation of testicular cells for the initiation of robust spermatogenesis, which can be truly called “testicular puberty.”  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号