首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: A rapid and simple procedure is presented to obtain nearly pure populations of human neuron-like cells from the SH-SY5Y neuroblastoma cell line. Sequential exposure of SH-SY5Y cells to retinoic acid and brain-derived neurotrophic factor in serum-free medium yields homogeneous populations of cells with neuronal morphology, avoiding the presence of other neural crest derivatives that would normally arise from those cells. Cells are withdrawn from the cell cycle, as shown by 5-bromo-2'-deoxyuridine uptake and retinoblastoma hypophosphorylation. Cell survival is dependent on the continuous presence of brain-derived neurotrophic factor, and removal of this neurotrophin causes apoptotic cell death accompanied by an attempt to reenter the cell cycle. Differentiated cells express neuronal markers, including neurofilaments, neuron-specific enolase, and growth-associated protein-43 as well as neuronal polarity markers such as tau and microtubule-associated protein 2. Moreover, differentiated cultures do not contain glial cells, as could be evidenced after the negative staining for glial fibrillary acidic protein. In conclusion, the protocol presented herein yields homogeneous populations of human neuronal differentiated cells that present many of the characteristics of primary cultures of neurons. This model may be useful to perform large-scale biochemical and molecular studies due to its susceptibility to genetic manipulation and the availability of an unlimited amount of cells.  相似文献   

2.
SH-SY5Y cells, derived from a human neuroblastoma, were submitted to short- or long-term exposures to lithium carbonate concentrations ranging from 0.5 to 8 mM. Short-term exposures (4 days) to concentrations higher than 6 mM were found to reduce cell growth rate while exposure to 8 mM resulted in significant cell mortality. These ranges of concentrations induced an overexpression of (1) the HSP27 stress protein, (2) a 108 kDa protein (P108) recognized by an anti-phospho-HSP27(Ser78) antibody, and probably corresponding to a phosphorylated HSP27 tetramer, (3) a 105 kDa protein (P105), possible glycosylated or phosphorylated form of the GRP94 stress protein and (4) a phosphorylated (inactivated) form of glycogen synthase kinase (GSK3α/β) SH-SY5Y cells, when cultured in the presence of 0.5 mM lithium for 25 weeks, displayed interesting features as compared to controls: (1) higher cell growth rate, (2) increased resistance toward the inhibitory effects of high lithium concentrations on cell proliferation, (3) lower basal level of lipid peroxidation (TBARS) and improved tolerance to oxidative stress induced by high lithium concentrations, (5) reduced expression of monomeric HSP27 versus an increase of corresponding tetrameric protein (P108) and (6) overexpression of a 105 kDa protein (P105). In conclusion, our study suggests that chronic treatment (over several months) by therapeutic relevant lithium concentrations could favour neurogenesis, decrease the vulnerability of neuronal cells to oxidative stress and induce posttranslational changes of molecular chaperones.  相似文献   

3.
This study examines the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)2D3 or its derivatives, but significantly decreased in the presence of the two retinoids (0.001–10 μM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM KH 1060, and 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.  相似文献   

4.
Neuroblastoma is one of the most widely seen under the age of 15 tumors that occur in the adrenal medulla and sympathetic ganglia. Cisplatin, an antineoplastic drug, is a Platinum-based compound and is known to inhibit the proliferation of neuroblastoma cells. Effective applications of nanoparticles in biomedical areas such as biomolecular, antimicrobial detection and diagnosis, tissue engineering, theranostics, biomarking, drug delivery, and anti-cancer have been investigated in many studies. This study aims to prepare the bioconjugates of CoS (cobalt sulfide) nanoparticles (NPs) with cisplatin combination groups and to evaluate their effects on the neuroblastoma cell line. Nanoparticle synthesis was done using the green synthesis technique using Punica granatum plant extract. The size and shape of CoS NPs were characterized by SEM, FT-IR, and XRD. Zeta potential was confirmed by the DLS study. For this purpose, the SH-SY5Y neuroblastoma cell line was cultured in a suitable cell culture medium. Cisplatin 5 µg and different concentrations (Cisplatin + CoS NPs bioconjugates (5, 10, 25, 50, 75 μg) doses were applied to SH-SY5Y neuroblastoma cell lines for 24 h. TAC, TOS and MTT tests were performed 24 h after the application. According to the MTT test results, cisplatin and CoS NP combinations reduced the proliferation of neuroblastoma cells by 78 to 57% compared to the cisplatin control. From the findings obtained; the most effective Bio-conjugate group was Cisplatin 5 μg/mL + CoS 75 μg/mL.  相似文献   

5.
In this study, a significant increase by 50% in intracellular free calcium concentration ([Ca(2+)](i)) was observed in differentiated human neuroblastoma (SH-SY5Y) cells after exposure to 0.25microM of the fungal metabolite gliotoxin for 72h. Further, the involvement of caspases and calpains was demonstrated to underlie the gliotoxin-induced cytotoxic and neurite degenerative effects. The caspase inhibitor Z-VAD-fmk almost completely reduced the neurite degeneration from 40% degeneration of neurites to 5% as compared to control. Inhibition of calpains with calpeptin significantly attenuated gliotoxin-induced cytotoxicity, determined as reduction in total cellular protein content, from 43% to 14% as compared to control cells. Western blot analyses of alphaII-spectrin breakdown fragments confirmed activity of the proteases, and that alphaII-spectrin was cleaved by caspases in gliotoxin-exposed cells. These results show that calpains and caspases have a role in the toxicity of gliotoxin in differentiated SH-SY5Y cells and that the process may be Ca(2+)-mediated.  相似文献   

6.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   

7.
Several cholinesterase inhibitors used in the treatment of Alzheimer's disease (AD) have been shown to interact with an allosteric site on the nicotinic acetylcholine receptor (nAChR). A possible linkage between the phosphorylation state of tau, the major component of paired helical filaments found in AD brain, and stimulation of nAChRs by cholinesterase inhibitors and nicotinic agonists was investigated. Western blot analysis showed that treatment of SH-SY5Y cells for 72 h with the cholinesterase inhibitors tacrine (10(-5) M), donepezil (10(-5) M), and galanthamine (10(-5) M), nicotine (10(-5) M), and epibatidine (10(-7) M) increased tau levels as detected with Tau-1, AT 8, and AT 270 monoclonal antibodies and binding of [3H]epibatidine. The increase in tau immunoreactivity induced by nicotine, epibatidine, and tacrine, but not the up-regulation of nAChRs, was prevented by the antagonists d-tubocurarine and mecamylamine. Both antagonists were synergistic with the nicotinic agonists in causing up-regulation, but only d-tubocurarine showed a synergistic effect with tacrine. The increased tau immunoreactivity induced by tacrine was not prevented by atropine, indicating that in terms of cholinergic receptors, tacrine modulates tau levels mainly through interactions with nAChRs and not with muscarinic receptors. Additional work is needed to determine the exact mechanism by which cholinesterase inhibitors and nicotinic agonists modulate phosphorylation and levels of tau protein.  相似文献   

8.
BackgroundPotential protection against the neurotoxic damages of high levels of fluoride on rats and SH-SY5Y cells by extract of Ginkgo biloba leaves, as well as underlying mechanisms, were examined.MethodsThe rats were divided randomly into 4 groups, i.e., control, treatment with the extract (100 mg/kg body weight, gavage once daily), treatment with fluoride (50 ppm F- in drinking water) and combined treatment with both; SH-SY5Y cells exposed to fluoride and fluoride in combination with the extract or 4-Amino-1,8-naphthalimide (4-ANI), an inhibitor of poly (ADP-ribose) polymerase-1 (PARP-1). Spatial learning and memory in the rats were assessed employing Morris water maze test; the contents of fluoride in brains and urine by fluoride ion-selective electrode; cytotoxicity of fluoride was by CCK-8 kit; the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) by appropriate kits; the level of 8-hydroxydeoxyguanosine (8-OHdG) was by ELISA; the content of ROS and frequency of apoptosis by flow cytometry; the expressions of phospho-histone H2A.X(Ser139), PARP-1, poly (ADP-ribose) (PAR) and Sirtuin-1 (SIRT1) by Western blotting or immunofluorescence.ResultsThe rats with prolong treatment of fluoride exhibited dental fluorosis, the increased contents of fluoride in brains and urine and the declined ability of learning and memory. In the hippocampus of the rats and SH-SY5Y cells exposed to fluoride, the levels of ROS, MDA, apoptosis, 8-OHdG and the protein expressions of histone H2A.X(Ser139), PARP-1 and PAR were all elevated; the activities of SOD and GSH-Px and the protein expression of SIRT1 reduced. Interestingly, the treatment of Ginkgo biloba extract attenuated these neurotoxic effects on rats and SH-SY5Y cells exposed to fluoride and the treatment of 4-ANI produced a neuroprotective effect against fluoride exposure.ConclusionGinkgo biloba extract attenuated neurotoxic damages induced by fluoride exposure to rats and SH-SY5Y cells and the underlying mechanism might involve the inhibition of PARP-1 and the promotion of SIRT1.  相似文献   

9.
Ca2+ transport by sarco/endoplasmic reticulum, tightly coupled with the enzymatic activity of Ca2+-dependent ATPase, controls the cell cycle through the regulation of genes operating in the critical G1 to S checkpoint. Experimental studies demonstrated that acylphosphatase actively hydrolyses the phosphorylated intermediate of sarco/endoplasmic reticulum calcium ATPase (SERCA) and therefore enhances the activity of Ca2+ pump. In this study we found that SH-SY5Y neuroblastoma cell division was blocked by entry into a quiescent G0-like state by thapsigargin, a high specific SERCA inhibitor, highlighting the regulatory role of SERCA in cell cycle progression. Addition of physiological amounts of acylphosphatase to SY5Y membranes resulted in a significant increase in the rate of ATP hydrolysis of SERCA. In synchronized cells a concomitant variation of the level of acylphosphatase isoenzymes opposite to that of intracellular free calcium during the G1 and S phases occurs. Particularly, during G1 phase progression the isoenzymes content declined steadily and hit the lowest level after 6 h from G0 to G1 transition with a concomitant significant increase of calcium levels. No changes in free calcium and acylphosphatase levels upon thapsigargin inhibition were observed. Moreover, a specific binding between acylphosphatase and SERCA was demonstrated. No significant change in SERCA-2 expression was found. These findings suggest that the hydrolytic activity of acylphosphatase increase the turnover of the phosphoenzyme intermediate with the consequences of an enhanced efficiency of calcium transport across endoplasmic reticulum and a subsequent decrease in cytoplasmic calcium levels. A hypothesis about the modulation of SERCA activity by acylphosphatase during cell cycle in SY5Y cells in discussed.  相似文献   

10.
Abstract: SH-SY5Y human neuroblastoma cells express muscarinic M3 receptors as well as insulin receptors, thus offering the opportunity to investigate possible cross-talk following activation of two distinct intracellular signal transduction pathways that convert the precursor phosphatidylinositol (PI) to its 3′ phosphate or its 4′ phosphate, respectively. In this study, the effect of carbachol on insulin-stimulated PI 3-kinase (PI3K) activity was examined in SH-SY5Y cells. Insulin addition to the cell medium induced a 10–26-fold increase in anti-phosphotyrosine-immunoprecipitable PI3K activity. Preincubation with 1 mM carbachol inhibited the insulin-stimulated PI3K activity in a time-dependent manner, with half-maximal and maximal inhibition times of 4 and 15 min, respectively. Atropine blocked the inhibitory effect of carbachol. Although carbachol did not change the amount of 85-kDa subunit protein regulatory unit associated with tyrosine-phosphorylated proteins, either in control or in insulin-stimulated cells, it appears to decrease the amount of associated 110-kDa catalytic subunit protein in the latter instance. Because PI3K activity from SH-SY5Y cells has been shown to be inhibited in vitro in the presence of cytidine diphosphodiacylglycerol (CDP-DAG) or phosphatidate (PA), we examined the presence of these lipids in SH-SY5Y cells that had been treated with carbachol. Formation of both lipids was increased in a time-dependent manner following carbachol addition, and their increased levels are proposed to account for the observed in vivo inhibition of PI3K. Addition of the cell-permeable homologue didecanoyl-CDP-DAG to intact cells inhibited insulin-stimulated PI3K activity up to 75%, with an IC50 of 0.5 µM, a result that further supports a proposed lipid-mediated inhibition of PI3K. Exogenously added didecanoyl-PA, however, did not affect PI3K activity. The possibility that stimulation of the PI 4-kinase-mediated signal transduction pathway leads to down-regulation of the PI3K-mediated signal transduction pathway in vivo, via inhibition of PI3K by CDP-DAG or by other consequences of phosphoinositidase C-linked receptor activation, is discussed.  相似文献   

11.
BackgroundIntracellular iron involves in Fenton’s reaction-mediated Hydroxyl radical (OH·) generation by reacting with the neurotoxic agent 6-Hydroxydopamine (6-OHDA) autoxidation derivative Hydrogen Peroxide (H2O2). Several studies have been conducted so far on the neuroprotective activities of the iron chelator Deferoxamine (DFO) but little or no clear evidence about the underlying cellular mechanism is available.MethodsThe present study was conducted on Human neuroblastoma cell line SH-SY5Y in the absence or presence of 6-OHDA or H2O2 and / or DFO. Following incubation, cell viability assay, intracellular reactive oxygen species (ROS) determination, flow cytometric quantification of apoptotic cells followed by nuclear staining, intracellular tracking of transfected fusion construct of microtubule-associated protein 1B-light chain with Green fluorescent protein - Red fluorescent protein (LC3B-GFP-RFP reporters) and immunocytochemistry of intracellular Cathepsin protein by confocal microscopy, were conducted. In addition, western blotting was carried out to detect expressions of apoptotic and autophagy related proteins.ResultsThis study confirmed the neuroprotective potential of DFO by inhibiting 6-OHDA-mediated cell death and ROS generation. Reduced percentage of apoptotic cells and appearance of altered nuclei architecture followed by a reduced expression of cleaved PARP (Poly-ADP-ribose Polymerase) and cleaved Caspase-3 were observed upon DFO treatment against 6-OHDA, and as well as against H2O2 in SH-SY5Y cell lines. Besides, DFO induced the intracellular autophagolysosome formation (red puncta) rather than autophagosome (yellow puncta) only. Thereafter it was observed that DFO restored the expression of intracellular lysosomal protease Cathepsin and reduced the expression of the LC3-II.ConclusionTaken together, this study clearly demonstrated that the anti-Fenton activity of DFO inhibited apoptosis and caused blockade in ALP or autophagy dysfunction in SH-SY5Y cell lines. These outcomes further suggest that DFO provides neuroprotection by inhibiting apoptosis and inducing the progression of Autophagy- lysosomal pathway (ALP).  相似文献   

12.
Neurofibrillary tangles (NFT) of hyperphosphorylated tau protein are a major pathological hallmark of Alzheimer's disease (AD). One of the tau phosphorylating kinases with pathological relevance in AD has been suggested to be the cyclin-dependent kinase 5 (Cdk5). The proposed mechanism leading to pathological Cdk5 activity is through induced cleavage of p35 to a proteolytic product, p25. To further study activation of Cdk5 and its role in tau phosphorylation in vitro, we used differentiated SH-SY5Y cells treated with neurotoxic stimuli or transfected with p25. We show that glutamate increased tau phosphorylation, concomitant with an increased Cdk5 activity achieved by upregulation of Cdk5 and p35 protein levels. Treatment with the calcium ionophore A23187 generated the calpain cleaved p25 fragment but only in toxic conditions that caused dephosphorylation and loss of tau. When p25 was transfected to the cells, increased tau phosphorylation was achieved. However, application of the Cdk5 inhibitor Roscovitine did not result in inhibition of tau phosphorylation possibly due to activation of extracellular regulated kinase 1/2 (Erk1/2), which also is capable of phosphorylating tau. Cdk5 and Erk1/2 kinases share some common substrates but impact of their cross talk on tau phosphorylation has not previously been demonstrated. We also show that p25 is degraded via the proteasome in Roscovitine treated cells.  相似文献   

13.
This study examines the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)2D3 or its derivatives, but significantly decreased in the presence of the two retinoids (0.001–10 μM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM KH 1060, and 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.  相似文献   

14.
前期研究发现,人基质金属蛋白酶组织抑制剂-1(tissue inhibitors of metalloproteinases-1,TIMP-1)在唐氏综合征(Down’s syndrome ,DS)胎儿脑组织内表达下调.为了探讨TIMP-1表达下调参与DS脑病变发生的可能机制,本研究以人神经母细胞瘤细胞(SH-SY5Y)为模型,观察TIMP-1基因沉默后对其增殖和凋亡的影响.应用LipofectaminTM2000将TIMP-1特异性短发卡 RNA( short hairpin RNA,shRNA)导入SH-SY5Y细胞,经嘌呤霉素筛选获得稳定表达TIMP-1-shRNA细胞株;应用RT-PCR、real-time PCR和Western 印迹对干扰效率进行鉴定:与SH-SY5Y细胞相比,无论在mRNA水平还是蛋白水平,SH-SY5Y-TIMP-1-shRNA细胞中TIMP-1的表达显著下调(下调率接近100%).结果显示,已成功构建了TIMP-1基因沉默的SH-SY5Y细胞模型.在此基础上,通过MTT检测发现,TIMP-1基因沉默后SH-SY5Y细胞增殖减慢;流式细胞仪和荧光显微镜凋亡检测显示,TIMP-1基因沉默后SH-SY5Y细胞凋亡明显增加.这些研究结果表明,TIMP-1基因沉默能削弱SH-SY5Y细胞的增殖能力并增强SH-SY5Y的凋亡效应,提示TIMP-1可能是通过影响神经细胞的增殖和凋亡参与DS智力低下的发病过程.  相似文献   

15.
Inhibition of proteasome activity and the resulting protein accumulation are now known to be important events in the development of many neurological disorders, including Alzheimer’s and Parkinson’s diseases. Abnormal or over expressed proteins cause endoplasmic reticulum and oxidative stress leading to cell death, thus, normal proteasome function is critical for their removal. We have shown previously, with cultured SH-SY5Y neuroblastoma cells, that proteasome inhibition by the drug epoxomicin results in accumulation of ubiquitinated proteins. This causes obligatory loading of the mitochondria with calcium (Ca2+), resulting in mitochondrial damage and cytochrome c release, followed by programmed cell death (PCD). In the present study, we demonstrate that all-trans-retinoic acid (RA) pretreatment of SH-SY5Y cells protects them from PCD death after subsequent epoxomicin treatment which causes proteasome inhibition. Even though ubiquitinated protein aggregates are present, there is no evidence to suggest that autophagy is involved. We conclude that protection by RA is likely by mechanisms that interfere with cell stress-PCD pathway that otherwise would result from protein accumulation after proteasome inhibition. In addition, although RA activates both the AKT and ERK phosphorylation signaling pathways, only pretreatment with LY294002, an inhibitor of PI3-kinase in the AKT pathway, removed the protective effect of RA from the cells. This finding implies that RA activation of the AKT signaling cascade takes precedence over its activation of ERK1/2 phosphorylation, and that this selective effect of RA is key to its protection of epoxomicin-treated cells. Taken together, these findings suggest that RA treatment of cultured neuroblastoma cells sets up conditions under which proteasome inhibition, and the resultant accumulation of ubiquitinated proteins, loses its ability to kill the cells and may likely play a therapeutic role in neurodegenerative diseases.  相似文献   

16.
Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K(+)-mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.  相似文献   

17.
Parameters of ligand binding, stimulation of low-Km GTPase, and inhibition of adenylate cyclase were determined in intact human neuroblastoma SH-SY5Y cells and in their isolated membranes, both suspended in identical physiological buffer medium. In cells, the mu-selective opioid agonist [3H]Tyr-D-Ala-Gly(Me)Phe-Gly-ol ([3H]DAMGO) bound to two populations of sites with KD values of 3.9 and 160 nM, with less than 10% of the sites in the high-affinity state. Both sites were also detected at 4 degrees C and were displaced by various opioids, including quaternary naltrexone. The opioid antagonist [3H]naltrexone bound to a single population of sites, and in cells treated with pertussis toxin the biphasic displacement of [3H]naltrexone by DAMGO became monophasic with only low-affinity binding present. The toxin specifically reduced high-affinity agonist binding but had no effect on the binding of [3H]naltrexone. In isolated membranes, both agonist and antagonist bound to a single population of receptor sites with affinities similar to that of the high-affinity binding component in cells. Addition of GTP to membranes reduced the Bmax for [3H]DAMGO by 87% and induced a linear ligand binding component; a low-affinity binding site, however, could not be saturated. Compared with results obtained with membranes suspended in Tris buffer, agonist binding, including both receptor density and affinity, in the physiological medium was attenuated. The results suggest that high-affinity opioid agonist binding represents the ligand-receptor-guanine nucleotide binding protein (G protein) complex present in cells at low density due to modulation by endogenous GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Ugonin K, a flavonoid isolated from the rhizomes of Helminthostachys zeylanica, possesses potent antioxidant property. In this study, we investigate the neuroprotective effects of ugonin K on hydrogen peroxide (H2O2)-induced apoptosis in SH-SY5Y cells. Incubation of SH-SY5Y cells with H2O2 for 24 h induced cell death measured with MTT assay. Hoechst 33258 staining confirmed that the reduced cell viability by H2O2 was due to apoptosis. In addition, H2O2 increased the expression of 17-kDa cleaved fragment of caspase-3 which could be reversed by pretreatment with ugonin K. Pretreatment with ugonin K attenuated H2O2-induced cell death in a dose-dependent manner. Neuroprotective effect of ugonin K was abolished by ERK and PI3K inhibitors. Pretreatment with JNK kinase and p38 MAPK inhibitors had no effect on ugonin K-mediated protection against H2O2-induced apoptosis. Western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt (pS473) antibodies showed that ugonin K increased both ERK1/2 and Akt phosphorylation. These results suggest that ugonin K by activation of ERK1/2 and PI3K/Akt signal pathways protects SH-SY5Y cells from H2O2-induced apoptosis.  相似文献   

19.
Neuropeptide FF (NPFF) has been reported to play important roles in regulating diverse biological processes. However, little attention has been focused on the downstream signal transduction pathway of NPFF. Here, we used the differentiated neuroblastoma cell line, dSH-SY5Y, which endogenously expresses hNPFF2 receptor, to investigate the signal transduction downstream of NPFF. In particular we investigated the regulation of the extracellular signal-regulated protein kinase (ERK) and the nuclear factor kappa B (NF-κB) pathways by NPFF in these cells. NPFF rapidly and transiently stimulated ERK. H89, a selective inhibitor of cyclic AMP-dependent protein kinase A (PKA), inhibited the NPFF-activated ERK pathway, indicating the involvement of PKA in the NPFF-induced ERK activation. Down-regulation of nitric oxide synthases also attenuated NPFF-induced ERK activation, suggesting that a nitric oxide synthase-dependent pathway is involved. Moreover, the core upstream components of the NF-κB pathway were also significantly activated in response to NPFF, suggesting that the NF-κB pathway is involved in the signal transduction pathway of NPFF. Collectively, these data demonstrate that nitric oxide synthases are involved in the signal transduction pathway of NPFF, and provide the first evidence for the interaction between NPFF and the NF-κB pathway. These advances in our interpretation of the NPFF pathway mechanism will aid the comprehensive understanding of its function and provide novel molecular insight for further study of the NPFF system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号