首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
MSI-99 is a synthetic analog of magainin II (MII), a small cationic peptide highly inhibitory to a wide spectrum of microbial organisms. Tomato plants were transformed to express a gene encoding the MSI-99 peptide and tested for possible enhancement of resistance to important pathogens of this crop. Thirty-six tomato transformants carrying an MSI-99 expression vector designed to target the peptide into extracellular spaces were obtained by Agrobacterium tumefaciens-mediated transformation. Expression of MSI-99 caused no obvious cytotoxic effects in these plants. In the tests with Pseudomonas syringae pv. tomato (bacterial speck pathogen) at 105 CFU/ml, several MSI-99-expressing lines developed significantly fewer disease symptoms than controls. However, MSI-99-expressing lines were not significantly different from controls in their responses to the fungal pathogen Alternaria solani (early blight) and the oomycete pathogen Phytophthora infestans (late blight). These findings are in accordance with our previous in vitro inhibition tests, which showed that the MSI-99 peptide is more inhibitory against bacteria than against fungi and oomycetes. Additional in vitro inhibition assays showed that MSI-99 loses its antimicrobial activity in the total or extracellular fluids from leaflets of non-transformed tomato plants; however, P. syringae pv. tomato could not multiply in the extracellular fluid from an MSI-99-expressing line. Our results suggest that expression strategies providing continuous high expression of MSI-99 will be necessary to achieve significant enhancement of plant disease resistance.Abbreviations AMP Antimicrobial peptide - CFU Colony forming unit - ECF Extracellular fluid - gus -glucuronidase gene - nptII Neomycin phosphotransferase II - SP Signal peptide - TF Total fluidCommunicated by S. Gleddie  相似文献   

2.
Four synthetic cationic peptides, pep6, pep7, pep11 and pep20, were tested alone and in combinations for their antimicrobial activities against economically important plant pathogenic fungi (Phytophthora infestans and Alternaria solani) and bacteria (Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica). In in vitro studies, P. infestans and A. solani were inhibited by all four peptides, while E. carotovora subsp. carotovora and E. carotovora subsp. atroseptica were inhibited only by pep11 and pep20. All peptides completely inhibited P. infestans and A. solani on potato leaves and P. infestans on tubers at concentrations comparable to the in vitro IC50 (effective concentration for 50% growth inhibition) values, suggesting that these peptides are more potent in preventing infection than in inhibiting hyphal growth in vitro. Microscopic observations of P. infestans and A. solani when treated with these peptides revealed hyphal anomalies. In tuber-infectivity assays, pep11 and pep20 reduced bacterial softrot symptoms by 50% at 2.0 to 2.30 microM and by 100% at 20 microM. In assays involving two-way combinations of these peptides, growth inhibitions of fungi and bacteria by the combinations were no more than the sum of growth inhibitions by each peptide when used alone, indicating that they act additively. pep11 and pep20 are not phytotoxic to potato plants at 200 microM. With strong and broad-spectrum antimicrobial activities of pep11 and pep20 against fungi and bacteria, and with no antagonistic activities, the expression of these peptides in transgenic potato plants could lead to enhanced disease resistance against these pathogens.  相似文献   

3.
4.
A novel class of experimental fungicides has been discovered, which consists of special quinolin-6-yloxyacetamides. They are highly active against important phytopathogens, such as Phytophthora infestans (potato and tomato late blight), Mycosphaerella graminicola (wheat leaf blotch) and Uncinula necator (grape powdery mildew). Their fungicidal activity is due to their ability to inhibit fungal tubulin polymerization, leading to microtubule destabilization. An efficient synthesis route has been worked out, which allows the diverse substitution of four identified key positions across the molecular scaffold.  相似文献   

5.
6.
7.
Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.  相似文献   

8.
AIM: To identify antimicrobial peptides with high lytic activity against Rhizoctonia solani strain LR172, causal agent of rice sheath blight and aerial blight of soyabeans in the US. METHODS AND RESULTS: Among 12 natural and synthetic antimicrobial peptides tested in vitro, the wheat-seed peptide, purothionin, showed the strongest inhibitory activity that was similar to the antifungal antibiotics, nystatin and nikkomycin Z. Cecropin B, a natural peptide from cecropia moth, and synthetic peptide D4E1 produced the highest inhibitory activity against R. solani among linear peptides. Membrane permeabilization levels strongly correlated with antifungal activity of the peptides. Noticeable changes in membrane integrity were observed at concentrations of >/=0.5 micromol l(-1) for purothionin, 2 micromol l(-1) for cecropin B, D4E1, D2A21, melittin, and phor21, and 8 micromol l(-1) for magainin II and phor14. An increase of nuclear membrane permeabilization was observed in fungal cells treated with cecropin B, but not with purothionin. Diffusion of nuclear content was observed by fluorescent microscopy 10 min after adding a lethal concentration of cecropin B. Evaluation by electron microscopy confirmed severe cytoplasmic degradation and plasma membrane vesiculation. Purothionin and cecropin B were the most stable against proteolytic degradation when added to liquid cultures of R. solani. CONCLUSIONS: Purothionin, cecropin B, D4E1 and phor21 were shown to exhibit high in vitro lytic activity against R. solani strain LR172 for rice and soyabean. These peptides are greater than 16 amino acids long and rapidly increase fungal membrane permeabilization. Resistance to proteolysis is important for sufficient antifungal activity of antimicrobial peptides. SIGNIFICANCE AND IMPACT OF THE STUDY: Selected antimicrobial peptides offer an attractive alternative to traditional chemicals that could be utilized in molecular breeding to develop crops resistant to rice sheath blight and aerial blight of soyabean.  相似文献   

9.
AIMS: To isolate endophytic fungi from vegetable plants and examine their in vivo anti-oomycete activity against Phytophthora infestans in tomato plants. METHODS AND RESULTS: Endophytic fungi were isolated from surface-sterilized plant tissues and anti-oomycete activity was measured by in vivo assay using tomato seedlings. Endophytic fungi showing potent anti-oomycete activity were identified by morphological characteristics and nuclear ribosomal ITS1-5.8S-ITS2 sequence analysis. A total of 152 isolates were obtained from 66 healthy tissue samples of cucumber, red pepper, tomato, pumpkin and Chinese cabbage and the fermentation broths of 23 isolates showed potent in vivo anti-oomycete activity against tomato late blight with control values over 90%. The Fusarium oxysporum strain EF119, which was isolated from roots of red pepper, showed the most potent disease control efficacy against tomato late blight. In dual-culture tests, it inhibited the growth of Pythium ultimum, P. infestans and Phytophthora capsici. CONCLUSIONS: Among endophytic fungi isolated from healthy tissues of vegetable plants, F. oxysporum EF119 showed the most potent in vivo anti-oomycete activity against tomato late blight and in vitro anti-oomycete activity against several oomycete pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic fungi showing anti-oomycete activity in vitro and in vivo may be used as biocontrol agents particularly of tomato late blight.  相似文献   

10.
Phytophthora infestans is a devastating phytopathogenic oomycete that causes late blight on tomato and potato. Recent genome sequencing efforts of P. infestans and other Phytophthora species are generating vast amounts of sequence data providing opportunities to unlock the complex nature of pathogenesis. However, accurate annotation of Phytophthora genomes will be a significant challenge. Most of the information about gene structure in these species was gathered from a handful of genes resulting in significant limitations for development of ab initio gene-calling programs. In this study, we collected a total of 150 bioinformatically determined near full-length cDNA (FLcDNA) sequences of P. infestans that were predicted to contain full open reading frame sequences. We performed detailed computational analyses of these FLcDNA sequences to obtain a snapshot of P. infestans gene structure, gauge the degree of sequence conservation between P. infestans genes and those of Phytophthora sojae and Phytophthora ramorum, and identify patterns of gene conservation between P. infestans and various eukaryotes, particularly fungi, for which genome-wide translated protein sequences are available. These analyses helped us to define the structural characteristics of P. infestans genes using a validated data set. We also determined the degree of sequence conservation within the genus Phytophthora and identified a set of fast evolving genes. Finally, we identified a set of genes that are shared between Phytophthora and fungal phytopathogens but absent in animal fungal pathogens. These results confirm that plant pathogenic oomycetes and fungi share virulence components, and suggest that eukaryotic microbial pathogens that share similar lifestyles also share a similar set of genes independently of their phylogenetic relatedness.  相似文献   

11.
There is emerging evidence that the proteolytic machinery of plants plays important roles in defense against pathogens. The oomycete pathogen Phytophthora infestans, the agent of the devastating late blight disease of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum), has evolved an arsenal of protease inhibitors to overcome the action of host proteases. Previously, we described a family of 14 Kazal-like extracellular serine protease inhibitors from P. infestans. Among these, EPI1 and EPI10 bind and inhibit the pathogenesis-related (PR) P69B subtilisin-like serine protease of tomato. Here, we describe EPIC1 to EPIC4, a new family of P. infestans secreted proteins with similarity to cystatin-like protease inhibitor domains. Among these, the epiC1 and epiC2 genes lacked orthologs in Phytophthora sojae and Phytophthora ramorum, were relatively fast-evolving within P. infestans, and were up-regulated during infection of tomato, suggesting a role during P. infestans-host interactions. Biochemical functional analyses revealed that EPIC2B interacts with and inhibits a novel papain-like extracellular cysteine protease, termed Phytophthora Inhibited Protease 1 (PIP1). Characterization of PIP1 revealed that it is a PR protein closely related to Rcr3, a tomato apoplastic cysteine protease that functions in fungal resistance. Altogether, this and earlier studies suggest that interplay between host proteases of diverse catalytic families and pathogen inhibitors is a general defense-counterdefense process in plant-pathogen interactions.  相似文献   

12.
? Potato (Solanum tuberosum) calcium-dependent protein kinase (StCDPK5) has been shown to phosphorylate the N-terminal region of plasma membrane RBOH (respiratory burst oxidase homolog) proteins, and participate in StRBOHB-mediated reactive oxygen species (ROS) burst. The constitutively active form, StCDPK5VK, provides a useful tool for gain-of-function analysis of RBOH in defense responses. ? StCDPK5- and StCDPK5VK-green fluorescent protein fusion proteins were predominantly targeted to the plasma membrane, and conditional expression of StCDPK5VK activated StRBOHA-D. The interaction was confirmed by bimolecular fluorescence complementation assay. We generated transgenic potato plants containing StCDPK5VK under the control of a pathogen-inducible promoter to investigate the role of ROS burst on defense responses to blight pathogens. ? Virulent isolates of the late blight pathogen Phytophthora infestans and the early blight pathogen Alternaria solani induced hypersensitive response-like cell death accompanied by ROS production at the infection sites of transgenic plants. Transgenic plants showed resistance to the near-obligate hemibiotrophic pathogen P.?infestans and, by contrast, increased susceptibility to the necrotrophic pathogen A.?solani. ? These results indicate that RBOH-dependent ROS contribute to basal defense against near-obligate pathogens, but have a negative role in resistance or have a positive role in expansion of disease lesions caused by necrotrophic pathogens.  相似文献   

13.
Quantitative trait loci (QTLs) for resistance to Phytophthora infestans (late blight) were mapped in tomato. Reciprocal backcross populations derived from cultivated Lycopersicon esculentum x wild Lycopersicon hirsutum (BC-E, backcross to L. esculentum; BC-H, backcross to L. hirsutum) were phenotyped in three types of replicated disease assays (detached-leaflet, whole-plant, and field). Linkage maps were constructed for each BC population with RFLPs. Resistance QTLs were identified on all 12 tomato chromosomes using composite interval mapping. Six QTLs in BC-E (lb1a, lb2a, lb3, lb4, lb5b, and lb11b) and two QTLs in BC-H (lb5ab and lb6ab) were most consistently detected in replicated experiments or across assay methods. Lycopersicon hirsutum alleles conferred resistance at all QTLs except lb2a. Resistance QTLs coincided with QTLs for inoculum droplet dispersal on leaves, a trait in L. hirsutum that may contribute to resistance, and dispersal was mainly associated with leaf resistance. Some P. infestans resistance QTLs detected in tomato coincided with chromosomal locations of previously mapped R genes and QTLs for resistance to P. infestans in potato, suggesting functional conservation of resistance within the Solanaceae.  相似文献   

14.
马铃薯致病疫霉研究进展   总被引:3,自引:0,他引:3  
马铃薯致病疫霉(Phytophthora infestans)属卵菌纲(Oomycetes)霜霉目(Peronosporales)腐霉科(Pythiaceae)疫霉属(Phytophthora),是马铃薯和番茄晚疫病病原菌。由于晚疫病对马铃薯生产的毁灭性和严重性,对致病疫霉的研究一直是关注的重点。本文首先对病害引起的症状、发生特点及流行规律进行阐述,对有性生殖发生的遗传规律和多种交配型共存的大环境下病原菌群体结构变异特点进行归纳总结。随着2009年致病疫霉基因组测序的完成,本文比对了疫霉属目前已完成测序各个种的基因组学特点,介绍了致病疫霉在效应子克隆方面的研究进展及线粒体基因组研究现状,阐述了功能基因组学的两个重要技术:高密度遗传连锁图谱(high density linkage mapping)和全基因组关联分析(genome-wide association study,GWAS),及其在挖掘致病疫霉重要功能基因上的应用。本文有助于了解致病疫霉研究热点及后续突破方向,可为深入解析致病疫霉的功能基因及致病机制提供参考,对开发马铃薯晚疫病菌药物靶标及预测病害的大规模流行趋势也具有重要意义。  相似文献   

15.
Three distinct basic 14-kD proteins, P14a, P14b, and P14c, were isolated from tomato (Lycopersicon esculentum Mill. cv Baby) leaves infected with Phytophthora infestans. They exhibited antifungal activity against P. infestans both in vitro (inhibition of zoospore germination) and in vivo with a tomato leaf disc assay (decrease in infected leaf surface). Serological cross-reactions and amino acid sequence comparisons showed that the three proteins are members of the PR-1 group of pathogenesis-related (PR) proteins. P14a and P14b showed high similarity to a previously characterized P14, whereas P14c was found to be very similar to a putative basic-type PR-1 from tobacco predicted from isolated DNA clones. This protein, named PR-1 g, was purified from virus-infected tobacco (Nicotiana tabacum Samsun NN) leaves and characterized by amino acid microsequencing, along with the well-known acidic tobacco PR-1a, PR-1b, and PR-1c. The various tomato and tobacco PR-1 proteins were compared for their biological activity and found to display differential fungicidal activity against P. infestans in both the in vitro and in vivo assays, the most efficient being the newly characterized tomato P14c and tobacco PR-1g.  相似文献   

16.
γ-Ray irradiation of pre-sowing seeds of tomato did not trigger the formation of the phytoalexin “rishitin” in either leaves or fruits of tomato plants through different growth seasons. Application of copper sulfate initiated rishitin formation in both leaves and fruits. Increasing of γ-ray dose was accompanied by decreasing rishitin accumulation in the presence of copper sulfate. Rishitin of tomato leaves was found to be reduced significantly, concomitant with increasing the disease incidence for late and early blight, andFusarium wilt disease, after applying γ-irradiation, in the case of biotic initiatorsPhytophthora infestans, Alternaria solani orFusarium oxysporum alone or together with the abiotic inducer copper sulfate. Shelf-extending γ-ray doses of 1.0, 1.5 and 2.0 kGy decreased rishitin amounts in tomato fruits treated with copper sulfate alone or infected withPhytophthora infestans. Also, the amount of formed rishitin was reduced by extending the storage period.  相似文献   

17.
Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.  相似文献   

18.
地表球囊霉诱发番茄抗早疫病的机理   总被引:2,自引:0,他引:2  
Song YY  Wang RL  Wei XC  Lu YJ  Tang ZY  Wu GZ  Su YJ  Zeng RS 《应用生态学报》2011,22(9):2316-2324
丛枝菌根可以改善植物营养状况,提高宿主植物的抗病性.本文研究了番茄幼苗预先接种丛枝菌根真菌(AMF)地表球囊霉后对番茄植株保护酶活性和防御反应基因表达,以及对番茄早疫病抗性的影响.结果表明:被AMF侵染的番茄植株在接种早疫病病原菌茄链格孢菌后,其叶片内的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性迅速提高.其中SOD酶活性在接种后18h达到最高,比只接种地表球囊霉(G)、茄链格孢菌(A)以及未接种AMF和病原菌的对照(CK)分别高28.6%、79.2%和82.8%;POD酶活性在接种后65 h达到最高,分别比G、A处理和CK高762%、18.3%和1710%.经荧光定量PCR检测表明,AMF侵染后的番茄植株再接种病原菌,其叶片中PR1(病程相关蛋白基因)、PR2(β-1,3-葡聚糖酶基因)和PR3(几丁质酶基因)基因的最高转录水平达到CK的9.67、8.54和13.4倍.与CK相比,先接种地表球囊霉再接种茄链格孢菌的番茄植株(GA)的早疫病发病率和病情指数分别降低了36.3%和61.4%.预先接种AMF的番茄植株在遇到病原菌袭击时诱导的防御反应强而迅速,诱发(priming)可能是菌根真菌提高宿主植物抗病性的重要机制.  相似文献   

19.
几种真菌发酵液对致病疫霉的抑制作用   总被引:24,自引:0,他引:24  
测定了8种真菌发酵液在5种不同浓度下对致病疫霉菌丝生长、游动孢子静止、静止胞萌发、附着胞形成和侵入丝形成等不同阶段的影响。结果表明,供试真菌不同浓度的发酵液,对致病疫霉上述各个阶段均有一定程度的抑制作用,并均随发酵液浓度增加,抑制作用逐渐增强,浓度为100%时,抑制作用均达到最高。其中,立枯丝核菌发酵液的抑制作用最强,浓度为100%时,对致病疫霉菌丝生长的抑制率达到90.4%,而静止胞萌发率仅为2.4%,附着胞及侵入丝均未见形成。  相似文献   

20.
The plant pathogen Phytophthora infestans causes late blight, a devastating disease on potato that led to the Irish potato famine during 1845-1847. The disease is considered a reemerging problem and still causes major epidemics on both potato and tomato crops worldwide. Theories on the origin of the disease based on an examination of the genetic diversity and structure of P. infestans populations and use of historic specimens to understand modern day epidemics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号