首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ESR method was used to study free-radical disturbances in tissues of mouse liver and spleen exposed in vitro to gamma-radiation and fission neutrons. It was shown that both types of radiation induced damages to basic chemical components of the cell, namely, DNA, lipids, proteins, and water. The radiochemical yields of each radical registered were obtained and RBE of neutrons were evaluated with a reference to the formation in tissues of radicals of each type. Membrane lipids were shown to be markedly injured by neutrons.  相似文献   

2.
Conformational properties of DNA after exposure to gamma rays and neutrons   总被引:1,自引:0,他引:1  
DNA aqueous solutions were irradiated with 0-40 Gy of 60Co gamma rays and 0-1.5 Gy of (Pu-Be) neutrons. Thermal transition spectrophotometry (TTS) was used to trace the changes in the DNA conformation at the above doses. Previous results using the perturbed angular correlation (PAC) method were used to complement to the current analysis. The TTS and PAC methods are two different approaches to the study of the effects of radiation on DNA. Both showed that neutrons are more effective than gamma rays in inducing DNA damage. The TTS method showed that neutrons are 11 +/- 5 times more efficient than gamma rays, while the PAC method had shown this value to be 34 +/- 4. From the current study we deduced that the radiation damage to DNA is not a spontaneous effect but rather is an ensemble of damaging events that occur asynchronously. Any single method selected for the study of such damages can concentrate on only a part of the damage, leading to over- or underestimation of the relative effectiveness of the neutrons.  相似文献   

3.
The effects of fast and albedo neutrons and alpha particles on the molecular fractions of cellulose nitrate type CA 80, as a tissue equivalent material have been measured through the use of gel permeation chromatography. The samples in the form of thin sheets were exposed to fission neutron fluences in the range 105–1010 n/cm2 and to different energies of alpha particles in the range 1–5 MeV. The effects of irradiation on paraffin phantom, application of lithium borate radiator to the sample and storage of irradiated specimens for different periods were measured. The results indicated that CA80 eluted in one main fraction. Irradiation with neutrons or alpha particles caused fragmentation of this fraction to smaller molecules. Small and acceptable fade of the induced changes by radiation in the polymer due to storage for more than one month were noticed. The possibility of applying this technique in radiation dosimetry was discussed.  相似文献   

4.
Studies on the genetic effects of neutrons and X-rays have produced evidence that may be interpreted as indicating that neutrons induce clusters of closely linked genetic changes. According to this interpretation, it is to be expected that neutron-induced translocations will have a higher rate of associated recessive lethality, compared with translocations induced by low-LET radiation such as X-rays. The experiment reported here was designed to test whether this expectation is fulfilled. The dose-frequency response with neutrons for the induction of autosomal translocation was established by exposing males from the Oregon-K stock and then sampling treated mature sperm. From the data obtained, it was estimated that 10 Gy neutrons should induce about the same frequency of autosomal translocations as 27 Gy X-rays. These 2 doses were used to induce translocations in the spermatozoa of males carrying lethal-free autosomes, derived from the Oregon-K stock. Induced translocations were tested for homozygous viability and fertility. When these criteria were used, no qualitative difference was detected between the translocations induced by neutrons and X-rays.  相似文献   

5.
Hydrolytic damages to DNA can occur at physiological conditions. The possible role of DNA conformation on the distribution of such alterations of pyrimidines was investigated. Model compounds used were the synthetic alternating copolymer poly(dG-dC):poly(dG-dC) and the homopolymer poly(dG):poly(dC). Base damages were assayed by paper chromatography using polymers radioactively labeled in cytosine. Conformational changes were assayed by circular dichroic spectral changes. Incubation and heating of the polymers in 1 mM MnCl2 caused the spectral shift reported for the left-handed Z-DNA conformation in the alternating copolymer and the change reported for the triple helix in the homopolymer. After incubation in 85°C, incidences of base damages were compared between the polymers. The presence of manganese reduced depyrimidination in both polymers. Rates of cytosine deamination to uracil were substantial and did not vary among the various conformational states.  相似文献   

6.
The long-term effects of ionizing radiation on male gonads may be the result of damage to spermatogonial stem cells. Doses of 10 cGy to 15 Gy (60)Co gamma rays or 10 cGy to 7 Gy 14 MeV neutrons were given to NMRI mice as single or split doses separated by a 24-h interval. The ratios of haploid spermatids/2c cells and the coefficients of variation of DNA histogram peaks as measures of both the cytocidal and the clastogenic actions of radiation were analyzed by DNA flow cytometry after DAPI staining. The coefficient of variation is not only a statistical examination of the data but is also used here as a measure of residual damage to DNA (i.e. a biological dosimeter). Testicular histology was examined in parallel. At 70 days after irradiation, the relative biological effectiveness for neutrons at 50% survival of spermatogonial stem cells was 3.6 for single doses and 2.8 for split doses. The average coefficient of variation of unirradiated controls of elongated spermatids was doubled when stem cells were irradiated with single doses of approximately 14 Gy (60)Co gamma rays or 3 Gy neutrons and observed 70 days later. Split doses of (60)Co gamma rays were more effective than single doses, doubling DNA dispersion at 7 Gy. No fractionation effect was found with neutrons with coefficients of variation.  相似文献   

7.
Stimuli-responsive polymer architectures are molecular systems which evolve with an external signal. The observed changes are mainly decomposition, isomerization, polymerization, activation, supramolecular aggregation, and structural modifications of these molecules. The external stimuli, which can be combined in order to provoke these molecular changes, are numerous. In this review, we have chosen to present an overview on different mechanisms to impart responsiveness to dendritic polymers, with the particular aim of delivery and release of bioactive molecules.  相似文献   

8.
Chromosomes of budding yeast Saccharomyces pastorianus were used to determine the extent of DNA double-strand breaks (DSBs) induced by x-rays (30-50 keV) and 14 MeV neutrons. The yeast chromosomes were separated by pulsed-field gel electrophoresis (PFGE) and the proportion of unbroken molecules corresponding to the largest chromosome no. IV (1500 kbp) was used to calculate the DSB frequency assuming a random distribution of hits. To determine the protective contribution of the cell environment, chromosomes embedded in agarose plugs as well as intact yeast cells, were irradiated under conditions completely inhibiting DNA repair. Following irradiation, the intact cells were also embedded in agarose plugs and the chromosomes isolated to perform PFGE. All radiation experiments resulted in a linear dose-effect curve for DSBs. For both radiation qualities, the yield of DSBs for exposed isolated chromosomes exceeded that for intact yeast cells by a factor of 13. The relative biological effectiveness (RBE) of 14 MeV neutrons in the induction of DNA DSBs was about 2.5. This figure was found to be identical for the in vivo and in vitro exposure of yeast chromosomes (neutrons 36.7 and 2.8, x-rays 14.5 and 1.1 x 10(-8) DSB x Bp-1 Gy-1 for isolated DNA and intact cells, respectively).  相似文献   

9.
The diffusion of intracellular fluid and solutes is mainly limited by the density and the geometry of crossbridges between cytoskeletal polymers mediating the formation of an integrated cytoplasmic scaffold. Evidence for specific relationships between water and cytoskeletal polymers arises from the effect of heavy water on their polymerization process in vitro and on the cytoskeleton of living cells. The hydration of cytoskeletal subunits is modified through polymerization, a mechanism which may be involved in the direct contribution of the cytoskeleton to the osmotic properties of cells together with changes of hydration of polymers within networks. The dynamic properties of the hydration layer of cytoskeletal polymers may reflect the repetitive distribution of the surface charges of subunits within the polymer lattice, thus inducing a local and long range ordering of the diffusion flows of water and solutes inside polymer networks. The interactions between subunits in protofilaments and between protofilaments determine the specific viscoelastic properties of each type of polymer, regulated by associated proteins, and the mechanical properties of the cell through the formation of bundles and gels. Individual polymers are interconnected into dynamic networks through crossbridging by structural associated proteins and molecular motors, the activity of which involves cooperative interactions with the polymer lattice and likely the occurence of coordinated modifications of the hydration layer of the polymer surface. The cytoskeletal polymers are polyelectrolytes which constitute a large intracellular surface of condensed anionic charges and form a buffering structure for the sequestration of cations involved in the regulation of intracellular events. This property allows also the association of cytoplasmic enzymes and multimolecular complexes with the cytoskeleton, facilitating metabolic channelling and the localization of these complexes in specific subdomains of the cytoplasm. The consequences of interactions between membranes and the cytoskeleton in all cellular compartments range from the local immobilization and clustering of lipids and membrane proteins to the regulation of water and ion flows by the association of cytoskeletal subunits or polymers with transmembrane channels. The possibility that the polyelectrolyte properties of the cytoskeletal polymers contribute to the modulation of membrane potentials supports the hypothesis of a direct involvement of the cytoskeleton in intercellular communications.  相似文献   

10.
The underlying mechanisms associated with radiation-induced cognitive impairments remain elusive but may involve changes in hippocampal neural precursor cells. Proliferating neural precursor cells have been shown to be extremely sensitive to X rays, either from damage to the cells themselves and/or through microenvironmental factors, including the anatomical relationship with the microvasculature, which is altered by radiation. The neutron capture reaction in boron was used to determine whether the sensitivity of neural precursor cells was dominated by direct radiation effects or was mediated through changes in the microvasculature. Young adult rats were irradiated with X rays, neutrons only, or neutrons plus either mercapto-undecahydro-dodecaborane (BSH) or p-dihydroxyboryl-phenylalanine (BPA). BSH remains inside cerebral vessels, thereby limiting the neutron capture intravascularly; BPA readily passes into the parenchyma. One month after irradiation, cell proliferation and numbers of immature neurons were determined using immunohistochemistry. Results showed that (1) neural precursor cells and their progeny were decreased in a dose-dependent manner by mixed high- and low-LET radiation, and (2) selective irradiation of the microvasculature resulted in less loss of neural precursor cells than when the radiation dose was delivered uniformly to the parenchyma. This information, and in particular the approach of selectively irradiating the vasculature, may be useful in developing radioprotective compounds for use during therapeutic irradiation.  相似文献   

11.
Damage to DNA by heat can occur at physiological conditions. The effects of the varying conformational states adopted by double-stranded DNA on the incidences and distributions of thermally induced hydrolytic purine alterations are unknown. The possible role of conformational changes on damage by heat to purines in DNA polymers was therefore investigated. Model compounds used were the synthetic alternating copolymer poly(dG-dC):poly(dG-dC) and the homopolymer poly(dG):poly(dC). Base damages were assayed by high performance liquid chromatography using polymers radioactively labeled in guanine. Conformational states were assayed by circular dichroic spectral changes. Incubation and heating of the polymers in 1 mM Mn2+ caused the spectral shift reported for the left-handed Z-DNA conformation in the alternating copolymer and the change reported for the triple helix in the homopolymer. After incubation at 85 degrees C., incidences of base damages were compared between the polymers. No deamination of guanine to xanthine was observed under any conditions. The presence of manganese reduced depurination in both polymers. Rates of guanine imidazole ring openings to yield 2,6-diamino-4-hydroxy-5-formamidopyrimidine were increased in the presence of the cation and constituted the chief form of purine damage in the homopolymer. Therefore, the distribution of heat-induced DNA alterations within the genome may be determined by DNA conformational states. This observed opening of purine imidazole rings in the presence of manganese ions may have mutagenic consequences and may be involved in carcinogenesis by metals.  相似文献   

12.
E A Demina 《Radiobiologiia》1987,27(3):357-361
A linear component was predominant in the dose-response curve characterizing the radiosensitivity of human lymphocyte chromosomes after exposure to fast neutrons (E = 6 MeV) at different mitotic cycle stages. This was indicative of a single-hit mechanism of the formation of chromosome aberrations after the effect of 6 MeV neutrons. It is suggested that the plateau of the dose-response curve at the S-stage may be considered as an indication of repair of damages induced by neutrons at this stage.  相似文献   

13.
V79 Chinese hamster cells have been irradiated with X-rays and neutrons given simultaneously. The oxygen enhancement ratio and r.b.e. were measured as a function of the proportion of the dose due to the neutrons, which varied from 0 to 100 per cent. These were compared with the values calculated assuming the two types of radiation act independently, following an approach suggested by Curtis. The o.e.r. was less than the predicted value when the neutrons contributed less than about 40 per cent of the total dose. The r.b.e. also did not vary as predicted on the basis of independent action. The 'oxygen gain factor' reached half its maximum value when the proportion of the dose due to neutrons was only about 27 per cent. The results imply that there may be interaction between the damage caused by X-rays and neutrons and that beams having only 20 to 30 per cent of their dose due to high l.e.t. radiation, could be of therapeutic benefit.  相似文献   

14.
Filamentous cells of Trichoderma reesei were immobilized using a fibrous carrier covered with ionic-hydrophobic polymers, prepared by radiation copolymerization. The effect of the ionic properties of the polymers was investigated by changing the monomer composition in a trimethylpropane triacrylate (A-TMPT) — acrylic acid (AA) or methacrylic acid diethylaminoethyl ester (DEAEMA) system. More positive charge or less negative charge in the polymers led to an increase in the growth of the cells immobilized on their surface. Enzyme productivity in the immobilized cells with AA-A-TMPT polymer was higher than with a DEAEMA-A-TMPT polymer.  相似文献   

15.
We report here a comparative analysis of RBE for lethality of a single pulse (duration 65 micros) of fast neutron with ultra high dose rates (up to 6 x 10(6) Gy/s) and continuous neutron radiation (3.6 x 10(3) s) of the pulse reactor BARS-6. Three diploid strains, one haploid strain and three diploid repair-deficient strains (rad52-1/rad52-1; rad54/rad54; rad2/rad2) were used. The RBE values (D(0gamma)/1D(0n)) of a single pulse and continuous neutron irradiation were equal (1.7-1.8) with maximum RBE (4.1-3.1) in region of low doses (shoulder region). Haploid cells were found to be more (3 times) sensitive to both gamma-rays and neutrons than the wild type. There was no obvious decrease in the RBE of 1.9 in highly sensitive haploid cells as compared with highly resistant diploid cells. The repair-deficient strains (rad52-1/rad52-1; rad54/rad54) were more (up to 10 fold) sensitive to both neutrons and gamma-rays as compared with their parent line. The RBE values of 1.5-1.7 of neutrons for these mutants (independent by of the mode of irradiation) were found. The repair-deficient mutant rad2/rad2 had similar sensitivity as a wild type and a RBE value was 2.0. We have concluded that biological effectiveness of the neutrons of pulse reactor BARS-6 was independent of the dose-rate, differing up to 10(8) fold. The RBE didn't vary significantly with the capacity of cells to repair DNA damages.  相似文献   

16.
—The effect of different qualities of ionizing radiation on the activity of brain enzymes involved in the metabolism of neurotransmitters in specific regions of the brain of rats was investigated. Groups of Sprague-Dawley adult male rats were exposed to approx. 18,000 rads of radiation either rich in neutrons or rich in gamma rays. It was found that, when the animals were exposed to radiation rich in neutrons, monoamine oxidase (MAO) activity was markedly decreased in all brain areas studied. In contrast, a very marked increase in the activity of this enzyme was observed when the animals received the same dose of radiation rich in gamma rays. Relatively minor changes were observed in the activity of choline acetyl transferase (ChAc). Acetylcholinesterase (AChE) activity did not change appreciably.  相似文献   

17.
The study of cytoskeletal polymers has been an active area of research for more than 70 years. However, despite decades of pioneering work by some of the brightest scientists in biochemistry, cell biology, and physiology, many central questions regarding the polymers themselves are only now starting to be answered. For example, although it has long been appreciated that the actin cytoskeleton provides contractility and couples biochemical responses with mechanical stresses in cells, only recently have we begun to understand how the actin polymer itself responds to mechanical loads. Likewise, although it has long been appreciated that the microtubule cytoskeleton can be post-translationally modified, only recently have the enzymes responsible for these modifications been characterized, so that we can now begin to understand how these modifications alter the polymerization and regulation of microtubule structures. Even the septins in eukaryotes and the cytoskeletal polymers of prokaryotes have yielded new insights due to recent advances in microscopy techniques. In this thematic series of minireviews, these topics are covered by some of the very same scientists who generated these recent insights, thereby providing us with an overview of the State of the Cytoskeleton in 2015.  相似文献   

18.
Biochemical changes in lymphocyte plasma membranes were studied 3 and 18 h after whole-body exposure of rats to neutrons and gamma-rays at doses from 2 to 6 Gy. It was shown that fast neutrons, with an average energy of 1.5-2.0 MeV, increased the rate of lipid peroxidation more markedly than gamma-rays did. In addition, there was an increase in the number of free aminogroups on the thymocyte surface. Dose- and time-dependent parameters of changes in the aminogroup content on the cellular surface were quantitatively different after the effect of radiation with different LET.  相似文献   

19.
Two types of glycosylated glycerolphosphates were synthesized when a particulate enzyme prepared from Streptococcus sanguis was incubated with [3H]-phosphatidylglycerol and uridine diphosphate-[14C]glucose in the presence of MgCl2. The first type was extractable with saline and contained no fatty acid. The second type was pellet bound and could be extracted with 0.1% sodium dodecyl sulfate. Both types of polymers were purified and partially characterized. The first type of polymer was fractionated into five polymers, peaks 2a, 2b, 2c, 3a, and 3b. All except peak 2a, which contained only [3H]glycerol, contained both [3H]glycerol and [14C]glucose. [3H]NaBH4 reduction of acid hydrolysates of the polymers revealed that all of the polymers contained glucose as the major sugar componenta nd xylose as the minor sugar component. The second type of polymer was fractionated into three polymers, P-1, P-2, and P-3. All contained [3H]-glycerol, [14C]glucose, and fatty acids. P-1 appeared to be pure, whereas P-2 and P-3 contained two polymers each, as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

20.
The polymers involved in the adhesion of Pseudomonas fluorescens H2S to solid surfaces were investigated to determine whether differences between cell surface adhesives and biofilm matrix polymers could be detected. Two optical techniques, i.e., interference reflection microscopy (IRM) and light section microscopy (LSM), were used to compare the responses of the two types of polymer to treatment with electrolytes, dimethyl sulfoxide (DMSO), and Tween 20. To evaluate initial adhesive polymers, P. fluorescens H2S cells were allowed to attach to glass cover slip surfaces and were immediately examined with IRM, and their response to chemical solutions was tested. With IRM, changes in cell-substratum separation distance between 0 and ca. 100 nm are detectable as changes in relative light intensity of the image; a contraction of the polymer would be detected as a darkening of the image, whereas expansion would appear as image brightening. To evaluate the intercellular polymer matrix in biofilms, 3-day-old biofilms were exposed to similar solutions, and the resultant change in biofilm thickness was measured with LSM, which measures film thicknesses between 10 and 1,000 microns. The initial adhesive and biofilm polymers were similar in that both appeared to contract when treated with electrolytes and to expand when treated with Tween 20. However, with DMSO treatment, the initial adhesive polymer appeared to contract, whereas there was no change in thickness of the biofilm polymer. These results indicate that both polymers bear acidic groups and thus act electrostatically with cations and are able to enter into hydrophobic interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号