首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of these studies was to determine whether inosine, a precursor of the antioxidant uric acid, can ameliorate hemin-induced oxidative stress. Dietary inclusion of inosine was begun either before or after hemin-induced oxidative stress. Broilers (4 weeks) were divided into four treatment groups (Control, Hemin, Inosine, Hemin/Inosine). Throughout the study control birds (n = 10) were injected daily with a buffer solution, while hemin birds (n = 10) were injected daily (i.p.) with a 20 mg/kg body weight hemin buffer solution. Leukocyte oxidative activity (LOA) and concentrations of plasma uric acid (PUA) were measured. Results from the first study showed that hemin birds had increased levels of LOA (P = 0.0333) and lower PUA (P = 0.1174). On day 10, control and hemin birds were subdivided into inosine birds (n = 5) and hemin/inosine birds (n = 5). These birds were given 0.6 M/kg of feed/day of dry inosine. Plasma concentrations of uric acid and LOA were then measured on day 15. Results showed that inosine raised concentrations of PUA (P = 0.0001) and lowered LOA (P = 0.0044) as induced by hemin. In the second study pretreatment of broilers with hemin prevented the increase in LOA induced by hemin (P = 0.0001). These results show that modulating the concentrations of uric acid can markedly affect oxidative stress.  相似文献   

2.
Melatonin is a hormone that is released from the pineal gland into the blood stream and is controlled by nerve impulses from the suprachiasmatic nuclei. Melatonin synthesis, which is inhibited by light on the mammalian retina, peaks in plasma concentrations during the night. Though still a subject of intense research, melatonin in mammals is known to effect the reproductive system, thyroid function, and adaptations to seasonal changes. Sled dogs in Fairbanks, Alaska (65 degrees N) can be exposed to anywhere from 21 h of daylight in the summer to 4 h in the winter. While light may be the primary factor influencing melatonin production, we hypothesized that exercise may also affect melatonin production. In the current study, sled dogs were used to study seasonal and diurnal variation in melatonin production. Sled dogs by nature are elite athletes and therefore exercise was a focus in the study. Both exercise and non exercise dogs from 2 distinct latitudes were used. The peak in melatonin production was prolonged in high latitude dogs (65 degrees N), compared with lower latitude dogs (45 degrees N). Dogs at both latitudes show a reduction in peak melatonin levels with exercise, and winter melatonin levels in both locations were higher than the summer. Surprisingly, sled dogs in Alaska had lower melatonin levels than sled dogs in New York.  相似文献   

3.
  总被引:17,自引:0,他引:17  
Research evidence has accumulated in the past decade that strenuous aerobic exercise is associated with oxidative stress and tissue damage in the body. There is indication that generation of oxygen free radicals and other reactive oxygen species may be the underlying mechanism for exercise-induced oxidative damage, but a causal relationship remains to be established. Enzymatic and nonenzymatic antioxidants play a vital role in protecting tissues from excessive oxidative damage during exercise. Depletion of each of the antioxidant systems increases the vulnerability of various tissues and cellular components to reactive oxygen species. Because acute strenuous exercise and chronic exercise training increase the consumption of various antioxidants, it is conceivable that dietary supplementation of specific antioxidants would be beneficial.  相似文献   

4.
目的:以高尿酸血症为基础,探讨一种接近临床痛风性关节炎发生的模型塑造方法。方法:选择雄性SD大鼠20只,随机分为正常组、模型组。塑造高血尿酸状态大鼠,诱导痛风性关节炎模型。检测两组大鼠踝关节不同时间段肿胀度、炎症分级;检测两组大鼠血清中尿酸及其生成排泄相关指标、血清中氧化应激反应和炎症表达相关指标;观察大鼠踝关节滑膜病理情况。结果:与正常组相比,痛风模型造模48小时内,模型组大鼠踝关节肿胀度显著升高(P0.05或P0.01),模型组炎症分级评分较高;实验第21、28 d,模型组大鼠血清UA含量升高(P0.01);实验第28d,模型组大鼠血清及肝脏中XOD、ADA活性均升高,血清及肝脏MDA表达增多、SOD表达减少(P0.05或P0.01);模型组大鼠血清及踝关节组织中IL-1β含量增加;HE染色表明模型组大鼠踝关节有明显病理损伤。结论:在大鼠高血尿酸状态下可诱导急性痛风性关节炎模型,此模型一定程度上符合人类痛风发作过程,并可维持一定的时间。  相似文献   

5.
F2-isoprostanes are produced by the non-enzymatic peroxidation of arachidonic acid in membrane phospholipids. This paper describes a new method for the determination of all four classes of F2-isoprostanes in human cerebrospinal fluid (CSF) involving separation on a 1 mm x 150 mm porous graphitic carbon (PGC) column and detection by triple quadrupole mass spectrometry in negative-ion electrospray mode. The sample pre-treatment consisted of an ultrafiltration step, following which 300 microl of CSF sample could be injected directly onto a 1 mm x 10 mm PGC guard column functioning as a trap for the analytes. The loading solvent was Milli-Q water at 125 microl/min. After 3 min, the sample was switched into the separation column. The F2-isoprostanes were separated in 20 min using a linear solvent gradient comprising water, methanol, acetonitrile and ammonium hydroxide at a pH of 9.5 and a flow of 50 microl/min The limit of detection (calculated as 3S/N) was approximately 40 pM (14 pg/ml). The assay was linear within the examined range (18-450 pg/ml), using CSF spiked with iPF2alpha-III standard (r(2)>0.995). Repeatability data were calculated for CSF spiked to 90 pg/ml and the relative standard deviation (RSD) obtained was 3% (n=6).  相似文献   

6.
    
Uric acid has been hypothesized as being one of the more important antioxidants in limiting the accumulation of glycosylated endproducts in birds. Study 1 was designed to quantitatively manipulate the plasma concentrations of uric acid using hemin and allopurinol while study 2 determined their effects on skin pentosidine, the shear force value of Pectoralismajor muscle, plasma glucose, body weight and chemiluminescence monitored oxidative stress in broiler chickens. Hemin was hypothesized to raise uric acid concentrations thereby lowering oxidative stress whereas allopurinol was hypothesized to lower uric acid concentrations and raise measures of oxidative stress. In study 1 feeding allopurinol (10 mg/kg body weight) to 8-week-old broiler chicks (n=50) for 10 days decreased plasma uric acid by 57%. However, hemin (10 mg/kg body weight) increased uric acid concentrations 20%. In study 2, 12-week-old broiler chicks (n=90) were randomly assigned to either an ad libitum (AL) diet or a diet restricted (DR) group. Each group was further divided into three treatments (control, allopurinol or hemin fed). Unexpectedly, hemin did not significantly effect uric acid concentrations but increased (P<0.05) measures of chemiluminescence dependent oxidative stress in both the DR and AL birds probably due to the ability of iron to generate oxygen radicals. Allopurinol lowered concentrations of uric acid and increased (P<0.05) the oxidative stress in the AL birds at week 22, reduced (P<0.05) body weight in both the AL and DR fed birds at 16 and 22 weeks of age, and markedly increased (P<0.001) shear force values of the pectoralismajor muscle. Skin pentosidine levels increased (P<0.05) in AL birds fed allopurinol or hemin fed birds, but not in the diet restricted birds at 22 weeks. The significance of these studies is that concentrations of plasma uric acid can be related to measures of oxidative stress, which can be linked to tissue aging.  相似文献   

7.
The objective of this study was to establish if diabetes in the presence of polyneuropathy (PN) and/or cardiovascular autonomic neuropathy (CAN) is associated with alterations in the amounts of 8-epi-PGF (IP) and its metabolites including 2, 3-dinor-8-epi-PGF (dinor-IP) and 2, 3-dinor-5, 6 dihydro-8-epi-PGF (dinor-dihydro-IP) in urine. Mass spectrometric separation showed that excretion of IP was similar in the PN+/CAN ? and PN+/CAN+ groups but higher than in the PN ? /CAN ? group (n = 103, 22 and 60, respectively; P < 0.05). By contrast, excretion of dinor-IP or dinor-dihydro-IP were similar in the PN ? /CAN ? and PN+/CAN ? groups but higher than in PN+/CAN+ group. Correlations were obtained between IP and dinor-IP or dinor-dihydro-IP (r = 0.30; P < 0.001 and r = 0.31; P < 0.001, respectively). A significant association was also observed between dinor-IP and dinor-dihydro-IP (r = 0.48; P < 0.001). In conclusion, these biomarkers should prove useful in studies evaluating the impact of therapeutic drugs or antioxidant interventions aimed at delaying the onset of diabetic complications.  相似文献   

8.
Dimerumic acid (DMA) is contained in Monascus anka and Monascus pilosus fermented products. The purpose of this study was to evaluate the effect of DMA against salicylic acid (SA)- and tert-butylhydroperoxide (t-BHP)-induced oxidative stress and cytotoxicity in the liver, using rat liver microsomes and isolated rat hepatocytes. DMA was extracted from monascus-garlic-fermented extract using M. pilosus. In rat liver microsomes, 1 microM DMA decreased SA-induced lipid peroxidation but did not affect the production of the oxidative metabolite of SA via CYP. In isolated rat hepatocytes, 1 microM DMA decreased SA-induced lipid peroxidation and chemiluminescence (CL) generation and the intracellular glutathione-reduced form/oxidized form (GSH/GSSG) ratio in the presence of 1 microM DMA was higher than that without DMA; however, 100 microM DMA suppressed the leakage of lactate dehydrogenase (LDH). On the other hand, t-BHP-induced lipid peroxidation, CL generation, and LDH leakage were prevented by 100 microM DMA. Thus, DMA showed an antioxidative effect in hepatocytes and protected against hepatotoxicity by suppressing oxidative stress without affecting CYP enzymes.  相似文献   

9.
The present investigation reports the effect of rosmarinic acid (RA), an antioxidant on gentamicin sulphate (GS)-induced renal oxidative damage in rats. Rosmarinic acid (RA) has been demonstrated to have antioxidant, free radical scavenger and anti-inflamatory effects. Twenty-eight Sprague-Dawley rats were divided in to four equal groups as follows: group 1 (control), group 2 (GS 100 mg/kg/d ip), group 3 (GS 100 mg/kg/d ip + RA 50 mg/kg/d) and group 4 (GS 100 mg/kg/d ip + RA 100 mg/kg/d). Treatments were administrated once daily for 12 days. After 12 days 24 h urine was collected, blood was sampled and kidneys were removed. Serum and kidney tissue MDA assessed by thiobarbituric acid. Kidney paraffin sections (5 μm thickness) from the left kidney stained with periodic acid Schiff. Tubular necrosis was studied semiquantitatively and glomerular volume and volume density of proximal convoluted tubule (PCT) estimated stereologically. Kidney homogenize were prepared from right kidney. Serum creatinine, urea and kidney antioxidant enzymes activity were assessed by special kits. Data were compared by SPSS 13 software and Mann–Whitney test at p < 0.05. Co treatment of GS and RA (High dose) significantly decreased serum creatinine, MDA, urea, tubular necrosis (p < 0.05) and increase renal GSH, GPX, CAT, SOD, volume density of PCT and creatinine clearance significantly in comparison with GS group (p < 0.05). Treatment with RA (high dose) maintained serum creatinine, volume density of PCT, renal GSH, GPX, SOD and MDA as the same level as control group significantly (p < 0.05). In conclusion, RA alleviates GS nephrotoxicity via antioxidant activity, increase of renal GSH content and increase of renal antioxidant enzymes activity.  相似文献   

10.
Free radicals play an important role in the pathogenesis of brain injury. This study evaluates the potential relationship between ischaemia/reperfusion (I/R)-induced brain injury, peripheral oxidative stress (lymphocyte DNA damage), plasma antioxidant potential and uric acid levels. We observed that 15 min of ischaemia were sufficient to significantly increase lymphocyte DNA damage that remained elevated at the end of early (3 h) reperfusion and at later (72 h) reperfusion time; this parameter was not significantly increased, when compared to preoperated levels. In parallel, antioxidant potential was elevated after 15 min of ischaemia, remained high at early (3 h) reperfusion and decreased again with longer (72 h) reperfusion. A close association between the plasma antioxidant status and the uric acid content has been confirmed by findings that changes in TRAP values positively correlate with uric acid concentration in rat plasma after ischaemic injury. Moreover, results of in vitro experiments with extra uric acid addition to control plasma have shown that uric acid contributes to a greater part of TRAP values. These results indicate a similar time course of brain I/R-associated oxidative stress and peripheral antioxidant defence status and/or oxidative stress in animal experiments.  相似文献   

11.
A two-compartment kinetic model was used to describe reconstituted systems in which mitochondria compete with pyruvate kinase for kinase-generated ADP. The modelling suggests that cytosolic CK deficiency results in a 50% increase in outer mitochondrial membrane permeability.  相似文献   

12.
The F2-isoprostanes (F2-IsoP) are a series of prostaglandin (PG)-F2-like compounds that are produced by free-radical-mediated oxidation of arachidonic acid. One F2-IsoP with potent biological activity is 15-F2t-IsoP and increased levels of 15-F(2t)-IsoP have been measured in several diseases. The major urinary metabolite of 15-F2t-IsoP (8-iso-PGF(2alpha)) is 2,3-dinor-5,6-dihydro-15-F2t-IsoP (15-F2t-IsoP-M). Previously, we developed a stable isotope dilution gas chromatography/negative chemical ionization/mass spectrometry (MS) assay for 15-F2t-IsoP-M, which, while highly sensitive, required time-consuming derivatization and thin-layer chromatography purification. We now report the development of a more rapid high-performance liquid chromatography method coupled to electrospray ionization-tandem mass spectrometry (LC/MS/MS) to analyze all of the dinor,dihydro metabolites of the F2-IsoP isomers (F2-IsoP-M). The precision of this assay was +/-5.0% and the accuracy 80%. The assay remained linear over a range of 1-100 ng injected onto the LC column. Levels of F2-IsoP-M determined by the LC/MS/MS assay method significantly correlated with levels of 15-F2t-IsoP-M determined by the GC/MS assay (R = 0.77y = 67.2x-0.5). The levels of F2-IsoP-M detected in spot urines from 40 normal subjects were 38.1+/-19.1 ng/mg creatinine (mean+/-SD). This method provides an accurate and rapid assay to assess oxidative status in vivo.  相似文献   

13.
During exhausting exercise adenylate kinase in the muscle cells is activated and a degradation of adenosine 5'-diphosphate occurs. Consequently, degradation products of adenosine 5'-monophosphate including hypoxanthine and uric acid, accumulate in plasma. The aim of this study was to compare the concentration changes of hypoxanthine and uric acid in plasma following running of varying duration and intensity. In addition, plasma creatine kinase activity was measured to assess the possible relationship between metabolic stress and protein release. Four groups of competitive male runners ran 100 m (n = 7), 800 m (n = 11), 5000 m (n = 7) and 42,000 m (n = 7), respectively, at an exhausting pace. Subsequent to the 100 m event (mean running time 11 s) plasma concentrations of hypoxanthine and uric acid increased by 364% and 36% respectively (P less than 0.05), indicating a very high rate of adenine nucleotide degradation during the event. Following the 800-m event (mean running time 125 s), hypoxanthine and uric acid concentrations had increased by 1598% and 66%, respectively (P less than 0.05). Both the events of longer duration, 5000 m and 42,000 m, also caused a significant increase in plasma concentration of hypoxanthine (742% and 237% respectively, P less than 0.05) and plasma uric acid (54% and 34% respectively, P less than 0.05). Plasma activities of creatine kinase were significantly increased at 24 h only following the 5000 m and 42,000 m events (64% and 1186% respectively, P less than 0.05). Changes in plasma creatine kinase activity showed no correlation with changes in plasma concentration of either hypoxanthine or uric acid for the 5000 m and 42,000 m events (r = 0.00-0.45, P greater than 0.05).  相似文献   

14.
Background and objectives1) Nutritional assessment of the diet followed by patients with metabolic syndrome, and 2) biochemical analysis of the oxidation-reduction level in patients with metabolic syndrome.Material and methodsA cross-sectional study was conducted in patients with metabolic syndrome in Murcia. Fifty-three patients, 33 with and 20 without (control group) metabolic syndrome, were selected. The intervention consisted of completion of a recall survey and a test to nutritionally assess dietary intake. Anthropometric and laboratory variables, including those related to antioxidant activity, were also tested.ResultsAntioxidant activity was within normal limits in both groups (1.7 ± 0.2 mmol/L in the control group and 1.8 ± 0.1 mmol/L in the metabolic syndrome group) (NS). Superoxide dismutase levels were not significantly different between the groups. Mean glutathione reductase levels (U/L) were higher in the control group as compared to patients with metabolic syndrome (P < .05). As regards oxidative stress biomarkers, mean isoprostane levels were higher in the control group (4.9 ± 6.2 ng/mL) than in metabolic syndrome patients (3.5 ± 3.9 ng/mL) (P < .05). Oxidized LDL values tended to be higher in metabolic syndrome patients (96 ± 23.2 U/L) as compared to the control group (86.2 ± 17.3  U/L), but differences were not significant.ConclusionsThere is a trend to a poorer nutritional and biochemical profile in patients with metabolic syndrome, who also tend to have a greater degree of oxidative stress.  相似文献   

15.

Importance of the field

In recent years, a number of studies describing the effective therapeutic strategies of medicinal plants and their active constituents in traditional medicine have been reported. Indeed, tremendous demand for the development and implementation of these plant derived biomolecules in complementary and alternative medicine is increasing and appear to be promising candidates for pharmaceutical industrial research. These new molecules, especially those from natural resources, are considered as potential therapeutic targets, because they are derived from commonly consumed foodstuff and are considered to be safe for humans.

Areas covered in this review

This review highlights the beneficial role of arjunolic acid, a naturally occurring chiral triterpenoid saponin, in various organ pathophysiology and the underlying mechanism of its protective action. Studies on the biochemistry and pharmacology suggest the potential use of arjunolic acid as a novel promising therapeutic strategy.

What the readers will gain

The multifunctional therapeutic application of arjunolic acid has already been documented by its various biological functions including antioxidant, anti-fungal, anti-bacterial, anticholinesterase, antitumor, antiasthmatic, wound healing and insect growth inhibitor activities. The scientific basis behind its therapeutic application as a cardioprotective agent in traditional medicine is justified by its ability to prevent myocardial necrosis and apoptosis, platelet aggregation, coagulation and lowering of blood pressure, heart rate, as well as cholesterol levels. Its antioxidant property coupled with metal chelating property (by its two hydroxyl groups) protects different organs from metal and drug-induced organ pathophysiology. Arjunolic acid also plays a beneficial role in the pathogenesis of diabetes and its associated complications. The mechanism of cytoprotection of arjunolic acid, at least in part, results from the detoxification of reactive oxygen species (ROS) produced in the respective pathophysiology. In addition to its other biological functions, it also possesses vibrant insecticidal properties and it has the potential to be used as a structural molecular framework for the design of molecular receptors in the general area of supramolecular chemistry and nanochemistry. Esters of arjunolic acid function as organogelators which has wide application in designing thermochromic switches and sensor devices. Arjunolic acid derived crown ether is an attractive candidate for the design of molecular receptors, biomimetics and supramolecular systems capable of performing some biological functions.

Home message

This review would provide useful information about the recent progress of natural product research in the domain of clinical science. This review also aims to untie the multifunctional therapeutic application of arjunolic acid, a nanometer-long naturally occurring chiral triterpenoid biomolecule.  相似文献   

16.
Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds.  相似文献   

17.
    
This paper mainly studies the possible antioxidant of monoterpene and effects of its absence on other antioxidant defense. The leaves of rubber tree (Hevea brasiliensis) were fed with fosmidomycin through transpiration stream, in the dark, at room temperature for 2 h, and were then exposed to bright illumination (1,500 μmol m−2 s−1) and moderately high temperature (30°C) for 1 h. The results showed that monoterpene biosynthesis in leaves was considerably inhibited by fosmidomycin, and the elevated levels of both hydrogen peroxide and malondialdehyde were observed in the leaves fed with fosmidomycin (LFF). Compared to the control leaves (CK), ∆F/F m′ in the LFF was markedly lower during the first 20 min; however, there were no significant differences in non-photochemical quenching and photosynthetic pigments (chlorophylls and carotenoids). In contrast, the activities of antioxidant enzymes (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase) were enhanced in the LFF. Meanwhile, the contents of antioxidant metabolites (ascorbate and glutathione) were also elevated in the LFF, when compared with the CK. The results obtained here suggest that monoterpene may be very effective molecule in protecting plants against oxidative stress, the absence of monoterpene leads to the increased responses of the enzymatic and non-enzymatic antioxidant defenses to oxidative stress, and the enhancement of the enzymatic and non-enzymatic antioxidant defenses may, in part, compensate for the loss of antioxidant conferred by monoterpene.  相似文献   

18.
Isoprostanes, are a novel group of prostaglandin-like compounds that are biosynthesised from esterified polyunsaturated fatty acid (PUFA) through a non-enzymatic free radical-catalysed reaction. Several of these compounds possess potent biological activity, as evidenced mainly through their pulmonary and renal vasoconstrictive effects, and have short half-lives. It has been shown that isoprostanes act as full or partial agonists through thromboxane receptors. Both human and experimental studies have indicated associations of isoprostanes and severe inflammatory conditions, ischemia-reperfusion, diabetes and atherosclerosis. Reports have shown that F2-isoprostanes are authentic biomarkers of lipid peroxidation and can be used as potential in vivo indicators of oxidant stress in various clinical conditions, as well as in evaluations of antioxidants or drugs for their free radical-scavenging properties.

Higher levels of F2-isoprostanes have been found in the normal human pregnancy compared to non-pregnancy, but their physiological role has not been well studied so far. Since bioactive F2-isoprostanes are continuously formed in various tissues and large amounts of these potent compounds are found unmetabolised in their free acid form in the urine in normal basal conditions with a wide inter-individual variation, their role in the regulation of normal physiological functions could be of further biological interest, but has yet to be disclosed. Their potent biological activity has attracted great attention among scientists, since these compounds are found in humans and animals in both physiological and pathological conditions and can be used as reliable biomarkers of lipid peroxidation.  相似文献   

19.
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.  相似文献   

20.
氧化应激(oxidativestres)在中枢神经系统退行性疾病,如帕金森氏病、老年性痴呆和多发性硬化等的发病机制中起重要作用。这些疾病严重影响着老年人的生活质量,因此寻找有效的抗氧化剂用于防治中枢神经系统退行性疾病的发生和发展是一个十分重要和迫切的问题。本文研究了五味子酚(Sal)、丹酚酸A(SalA)和SYL三种化合物对氧化应激损伤中枢神经细胞的保护作用及其作用机理。Sal和SalA分别为中药红花、五味子和丹参的有效成分,SYL是新的、全合成的化合物,三者均有显著的抗氧化活性。本文研究结果显示三种化合物在体内外对多种氧化应激损伤脑组织模型都具有明显的保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号