首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soil bacterium, Myxococcus xanthus initiates a developmental program when nutrients are limited. This results in the formation of a multicellular fruiting body structure filled with differentiated, environmentally resistant spores. At least four cell-cell signals, cell motility, and aggregation functions are required for the completion of fruiting body formation.  相似文献   

2.
Light-induced lysis and carotenogenesis in Myxococcus xanthus   总被引:40,自引:19,他引:21  
Burchard, Robert P. (University of Minnesota, Minneapolis), and Martin Dworkin. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 91:535-545. 1966.-Myxococcus xanthus, grown vegetatively in the light, developed an orange carotenoid after the cells entered stationary phase of growth; pigment content increased with age. Cells grown in the dark did not develop carotenoid and could be photolysed by relatively low-intensity light only during stationary phase; rate of photolysis increased with age. Photolysis adhered to the reciprocity law, was temperature-independent and oxygen-dependent, and required the presence of nonspecific, monovalent cations; it was inhibited by one of several divalent cations. Logarithmic-phase cells were photosensitized by 100,000 x g pellet preparations of sonic-treated stationary-phase cells grown in the light and dark. A porphyrin with a Soret band at 408 mmu was isolated from photosensitive cells; logarithmic-phase cells contained about 1/16 the amount of porphyrin of stationary-phase cells. The purified material had spectral and chemical properties of protoporphyrin IX and photosensitized logarithmic-phase cells. Its spectrum was similar to the action spectrum for photolysis. We concluded that protoporphyrin IX is the natural endogenous photosensitizer. Carotenogenesis was stimulated by light in the blue-violet region of the visible spectrum and was inhibited by diphenylamine, resulting in photosensitivity of the cells. Photoprotection by carotenoid was lost in the cold. A mutant which synthesized carotenoid in the light and dark was photosensitive only after growth in diphenylamine. The ecological significance of these phenomena is discussed.  相似文献   

3.
The ssbA mutants of Myxococcus xanthus behave as if they are unable to produce a cell-to-cell signal required for normal development. They are unable to form fruiting bodies or spores on developmental medium. They do sporulate, however, if allowed to develop in mixtures with wild-type cells. Fusions of developmentally induced promoters of M. xanthus to the Escherichia coli lacZ gene were used to characterize the effect of the ssbA mutations on developmental gene expression. Each of the five independent fusions tested was found to be dependent upon the ssbA+ allele for full expression. The ssbA mutants were able to express each of these fusions if the mutants were allowed to develop in mixtures with wild-type (Lac-) cells. These results cannot be explained on the basis of genetic exchange. The data are consistent with regulation of gene expression mediated by cell-to-cell interactions.  相似文献   

4.
Murein (peptidoglycan) components are able to rescue sporulation in certain sporulation-defective mutants of Myxococcus xanthus. N-Acetylglucosamine, N-acetylmuramic acid, diaminopimelic acid, and D-alanine each increase the number of spores produced by SpoC mutants. When all four components are included they have a synergistic effect, raising the number of spores produced by SpoC mutants to the wild-type level. Murein-rescued spores are resistant to heat and sonic oscillation and germinate when plated on a nutrient-rich medium. They appear to be identical to fruiting body spores in their ultrastructure, in their protein composition, and in their resistance to boiling sodium dodecyl sulfate. Murein rescue of sporulation, like fruiting body sporulation, requires high cell density, a low nutrient level, and a solid surface.  相似文献   

5.
Myxococcus xanthus undergoes a starvation-induced multicellular developmental program during which cells partition into three known fates: (i) aggregation into fruiting bodies followed by differentiation into spores, (ii) lysis, or (iii) differentiation into nonaggregating persister-like cells, termed peripheral rods. As a first step to characterize cell fate segregation, we enumerated total, aggregating, and nonaggregating cells throughout the developmental program. We demonstrate that both cell lysis and cell aggregation begin with similar timing at approximately 24 h after induction of development. Examination of several known regulatory proteins in the separated aggregated and nonaggregated cell fractions revealed previously unknown heterogeneity in the accumulation patterns of proteins involved in type IV pilus (T4P)-mediated motility (PilC and PilA) and regulation of development (MrpC, FruA, and C-signal). As part of our characterization of the cell lysis fate, we set out to investigate the unorthodox MazF-MrpC toxin-antitoxin system which was previously proposed to induce programmed cell death (PCD). We demonstrate that deletion of mazF in two different wild-type M. xanthus laboratory strains does not significantly reduce developmental cell lysis, suggesting that MazF's role in promoting PCD is an adaption to the mutant background strain used previously.  相似文献   

6.
Developmental mutants of Myxococcus xanthus have been previously described which appear to be defective in required cell-cell interactions. These mutants fall into four phenotypic classes, Asg, Bsg, Csg, and Dsg, each of which is unable to differentiate into spores but can be rescued by extracellular complementation by wild-type cells or by mutants of a different class. We report the identification of one of the loci in which mutations result in a Bsg phenotype. The cloned locus was contained on a 12-kilobase EcoRI fragment and then localized by subcloning and a combination of in vitro and transposon mutagenesis. All mutations in this locus behave as a single complementation group, which we designate bsgA (formerly ssbA). Each of the bsgA mutations results in a nonsporulating phenotype, which can be rescued by extracellular complementation. Furthermore, we report that the bsgA mutants have a distinctive interaction with wild-type cells when vegetatively growing, swarming colonies converge.  相似文献   

7.
Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficiency was a function of the average number of cells within the bead at the time that sporulation conditions were imposed. A minimum of ca. 4 cells per microbead was necessary for efficient lysis and sporulation to proceed. Increasing this number accelerated the lysis and sporulation process. No lysis occurred when an average of 0.4 cell was entrapped per bead. Entrapping an average of 1.7 cells per bead resulted in 46% lysis and 3% sporulation of survivors, whereas entrapping an average of 4.2 cells per bead yielded 82% lysis and 44% sporulation of the surviving cells. Sporulation and lysis also depended upon the cell density in the culture as a whole. The existence of these two independent cell density parameters (cells per bead and cells per milliliter) suggests that at least two separate cell density signals play a role in controlling sporulation in M. xanthus.  相似文献   

8.
Myxococcus xanthus has two nearly independent genetic systems, A and S, which appear to mediate adventurous (single-cell) movement and social (group) movement, respectively. In addition to a notable reduction in group movement, social motility mutants exhibit decreased biofilm formation, cell cohesion, dye binding, fibril production, and fruiting body formation. The stk-1907 allele, containing transposon Tn5 insertion omega DK1907, was introduced into wild-type cells and many social motility mutants. This allele, which was epistatic to most social motility mutations, caused wild-type and most mutant cells to exhibit increased group movement, cell cohesion, dye binding, and production of cell surface fibrils. The presence of the stk-1907 allele in dsp mutants, which almost completely lack cell surface fibrils, did not result in these phenotypic changes; therefore, stk-1907 is hypostatic to dsp mutations. Those mutants which exhibited increased group movement and cell cohesion with the stk-1907 allele also had increased fruiting body formation, but no significant changes in spore production were observed. These results suggest that fibrils may mediate cell cohesion, dye binding, and group movement. Additionally, the results suggest that the dsp locus contains genes involved in subunit synthesis, transport, and/or assembly of fibrils. The wild-type and mutant alleles of stk were cloned and studied in merodiploids. The mutant allele is recessive, suggesting that Tn5 omega DK1907 caused a null mutation in a gene which acts as a negative regulator of fibril synthesis. The stk-1907 allele appears to cause utilization of the A motility system for group movement, possibly because of increased fibril production.  相似文献   

9.
Previously, we identified a gene (aldA) from Myxococcus xanthus, which we suggested encoded the enzyme alanine dehydrogenase on the basis of similarity to known Ald protein sequences (M. J. Ward, H. Lew, A. Treuner-Lange, and D. R. Zusman, J. Bacteriol. 180:5668-5675, 1998). In this study, we have confirmed that aldA does encode a functional alanine dehydrogenase, since it catalyzes the reversible conversion of alanine to pyruvate and ammonia. Whereas an aldA gene disruption mutation did not significantly influence the rate of growth or spreading on a rich medium, AldA was required for growth on a minimal medium containing L-alanine as the major source of carbon. Under developmental conditions, the aldA mutation caused delayed aggregation in both wild-type (DZ2) and FB (DZF1) strains. Poorly formed aggregates and reduced levels of spores were apparent in the DZ2 aldA mutant, even after prolonged development.  相似文献   

10.
The Frz signal transduction system of Myxococcus xanthus was originally thought to be a simple variation of the well-characterized Che system of the enteric bacteria. Recently, however, many additional Frz proteins, along with alternative signal transduction systems, have been discovered. Together these signal transduction pathways coordinate cell-cell behavior, permitting the complex interactions required for developmental aggregation and fruiting body formation.  相似文献   

11.
12.
The function of molecules associated with the cell surface may be determined by examining the phenotype of cells treated with inhibitors specific to these cell surface molecules. This strategy was used to examine the function of the major Congo red receptor of the myxobacterium Myxococcus xanthus, which has a developmental cycle that involves social interactions among cells. A class of social motility mutations (A+ S-), known as dsp, may inhibit the same subcellular component as Congo red because the phenotype of wild-type cells which had been treated with Congo red resembled in several ways the phenotype of the Dsp mutants. First, Congo red inhibited agglutination of wild-type cells, whereas Dsp cells were incapable of agglutinating, even in the absence of Congo red. Second, Congo red inhibited fruiting body formation by wild-type cells and reduced the yield of myxospores. Untreated Dsp cells were unable to form fruiting bodies and produced few myxospores. Third, Congo red reduced the rate of wild-type gliding motility to a level comparable to that of untreated Dsp cells, but did not inhibit the A motility of Dsp cells. Finally, binding studies showed that Dsp cells lacked the major Congo red receptor. Wild-type cells bound Congo red with an apparent association constant of 2.4 X 10(5) M-1, while Dsp cells bound it with an apparent association constant of 8.5 X 10(3) M-1. Binding of Congo red to wild-type cells was saturated in less than 10 min and was reversible when excess Congo red was removed. These results suggest that the Congo red receptors are controlled by the S motility system and that these receptors are involved in cell cohesion, social motility, and fruiting body formation.  相似文献   

13.
We have examined the pattern of synthesis of several membrane proteins during the aggregation phase of development in Myxococcus xanthus. Development was initiated by plating vegetative cells on polycarbonate filters placed on top of an agar medium that supported fruiting body formation. At various times during aggregation a filter was removed, the cells were pulse-labeled with [35S]methionine, and the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The rate of synthesis of numerous individual proteins changed during aggregation; we concentrated on six whose pattern of synthesis was greatly altered during aggregation. The rate of synthesis of five of the six proteins increased considerably during aggregation; that of the remaining protein was curtailed and appeared to be regulated by nutrient conditions. Three of the five major membrane proteins that increased during aggregation had a unique pattern of synthesis that was displayed only under conditions that are are required for development - high cell density, nutrient depletion, and a solid (agar) surface. The remaining two proteins were not unique to development; the appearance of one protein could be induced under conditions of high cell density, whereas the other could be induced by placing the cells on a solid agar surface. All of the five major proteins that appeared during development did so during the preaggregation stage, and the synthesis of four of the five proteins appeared to be curtailed late in aggregation. The synthesis of the remaining protein continued throughout aggregation.  相似文献   

14.
Contact-mediated cell-cell interactions play an important role in the social life-style of Myxococcus xanthus. Previous investigations have demonstrated that fimbriae (also referred to as pili) and extracellular fibrils are involved in these social interactions (L. J. Shimkets, Microbiol. Rev. 54:473-501, 1990). We have used the relatively new technique of low-voltage scanning electron microscopy (an ultra-high-resolution scanning technique that allows for the nanometer resolution of biological materials) to observe the topological details of cell-cell interactions in M. xanthus. Our observations indicated that the fibrils (which measure approximately 30 nm in diameter) are produced most extensively by cells that are in close contact with each other and are aberrantly produced by the cohesion-deficient dsp mutants. Immunogold analysis identified an antigen which is located exclusively on the extracellular fibrils. Western blots (immunoblots) of this antigen (designated FA-1 for fibrillar antigen 1) indicated that it is composed of several immunoreactive bands (molecular size range, 90 to 14 kDa), all of which are sensitive to protease digestion. A technique for fibril isolation was developed by using FA-1 as a fibril-specific marker. Low-voltage scanning electron microscope observations of swarming cells demonstrated that the expression of fibrils is differentially regulated between adventurous (individual) and socially (group) motile cells. The differential expression of fibrils suggests the existence of a mechanism for the regulation of fibril biosynthesis that functions within the overall system governing social interactions in M. xanthus.  相似文献   

15.
The transposon Tn5 was used to map temperature-sensitive mutants of Myxococcus xanthus defective in aggregation (C. E. Morrison and D. R. Zusman, J. Bacteriol. 140:1036-1042, 1979). Seven of the eight mutants showing a similar terminal phenotype (rough) were found to be tightly linked. These mapped in a group of loci which we have designated aggR1, aggR2, aggR3, and aggR4. Temperature-sensitive mutants having a different terminal phenotype were not liked to aggR. A search through a group of nonconditional rough mutants indicated that a much lower proportion of these (1 of 35) mapped in aggR. Thus, aggR is probably only one of many sites which can lead to the rough phenotype when mutated. Localized mutagenesis was used to isolate nine additional aggR mutants. All mapped within aggR1, aggR2, or aggR3, and none was found outside this region. Thus, we have characterized a cluster of developmental genes which are needed for aggregation in M. xanthus. The localization of a Tn5 insert adjacent to this region makes possible further manipulation of these genes.  相似文献   

16.
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.  相似文献   

17.
Certain developmental mutants of Myxococcus xanthus can be complemented (extracellularly) by wild-type cells. Insertions of Tn5 lac (a transposon which couples beta-galactosidase expression to exogenous promoters) into developmentally regulated genes were used to investigate extracellular complementation of the A group mutations. A- mutations reduced developmental beta-galactosidase expression from 18 of 21 Tn5 lac insertions tested and that expression was restored to A- Tn5 lac cells by adding wild-type cells. The earliest A-dependent Tn5 lac normally expresses beta-galactosidase at 1.5 hr of development indicating a developmental block at 1-2 hr in A- mutants. A substance which can rescue the expression of this early Tn5 lac is released by wild-type (A+) but not by A- cells. This substance appears in a cell-free wash of wild-type cells or in starvation buffer conditioned by wild-type cells 1-2 hr after development is initiated. The conditioned starvation buffer also restores normal morphological development to an A- mutant.  相似文献   

18.
19.
H B Kaplan  A Kuspa    D Kaiser 《Journal of bacteriology》1991,173(4):1460-1470
Progression through the early stages of Myxococcus xanthus fruiting body development requires the cell-to-cell transmission of soluble material called A signal. During these early stages, expression from the gene identified by Tn5 lac insertion omega 4521 increases. A DNA probe of the omega 4521 gene was constructed. Use of this probe showed that accumulation of mRNA corresponding to the omega 4521 gene depends upon A signal. A-signal-deficient (asg) mutants fail to accumulate this RNA, and the external addition of A signal restores accumulation. To identify links between A signal and its responsive gene, omega 4521, suppressors of an asg mutation were generated. All of the suppressor alleles restored lacZ expression from omega 4521 in the absence of A signal, and they were demonstrated to be neither reversions of the asgB mutation nor mutations in the promoter of omega 4521. Fifteen suppressor mutations map to two loci, sasA and sasB (for suppressor of asg). sasA and sasB mutants differ phenotypically during growth and development. Mid-logarithmic-phase sasA asgB double mutants, like sas+ asg+ strains, express low levels of lacZ, whereas sasB asgB double mutants express high levels. sasA asg+ mutants form abnormal colonies, are less cohesive than wild type, and are defective in fruiting body formation and sporulation. In contrast, sasB asg+ mutants form normal colonies, are as cohesive as wild type, and appear to develop normally. The characteristics of sasA suppressors implicate the sasA+ product as a negative regulator in the A-signal-dependent regulation of omega 4521.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号