首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequence of Indian peafowl egg-white lysozyme has been identified. The reduced and carboxymethylated lysozyme was digested with trypsin followed by purification of the resulting peptides by reverse-phase HPLC. The tryptic peptides obtained were sequenced using the DABITC/PITC double coupling manual sequencing method. The alignment of the tryptic peptides were deduced by comparison with corresponding peptides of hen egg-white lysozyme. This protein proved to consist of 129 amino acid residues, and a relative molecular mass of 14423 Da was calculated. Amino acid sequence comparison of peafowl lysozyme and other phasianoid bird lysozymes revealed a maximum homology ratio of 98% with turkey lysozyme.  相似文献   

2.
The cysteine-containing tryptic peptides of pigeon egg-white lysozyme have been purified by reverse-phase chromatography and thin-layer chromatography and electrophoresis on cellulose plates. They contain the eight cysteine residues of the protein. The amino acid sequence of these peptides reveals the existence of 24 differences in comparison to the homologous regions in hen egg-white lysozyme, among the 53 sequenced residues. The sequence data are compared to the corresponding ones in other type c lysozymes. According to this study, the pigeon lysozyme exhibits ten substitutions not observed in any other type c lysozyme. Pigeon lysozyme is the most different type c lysozyme from birds, according to the data on primary structure.  相似文献   

3.
Bombyx mori lysozyme is 10 amino acids shorter than hen egg-white lysozyme, which is a typical c-type lysozyme. It was expressed by using the methylotrophic yeast Pichia pastoris. The thermal stability and the enzymatic activity of the Bombyx mori lysozyme were estimated and compared with those of human and hen egg-white lysozymes. The denaturation temperature was 17-26°C lower than those of human and hen egg-white lysozymes. Further, the enthalpy change and the heat capacity change for unfolding were smaller than those of human lysozyme. It was also confirmed that the stability against guanidine hydrochloride was lower than those of the other two lysozymes. The enzymatic activity toward a simple synthetic substrate was measured and compared with those of human and hen egg-white lysozymes. The B-F binding mode was obviously dominant, although the A-E binding mode was preferred in human and hen egg-white lysozymes.  相似文献   

4.
Human airway lysozyme, purified from pathological bronchial secretions, is characterized by a specific activity 3-fold higher than that of hen egg-white lysozyme. The amino acid composition of human airway lysozyme is identical to that of other human lysozymes. The laser Raman spectra of human airway lysozyme and hen egg-white lysozyme in phosphate buffer solution (pH 7.2) are recorded in the range 300-1900 cm-1 at 488 nm. Drastic intensity differences are observed between the spectra analyzed in the ranges characteristic of the peptide backbone (e.g., beta-sheet; C alpha-C, C alpha-N), and of the aromatic side-chain vibrations (tyrosine, tryptophan). The deconvolution of the Raman amide I band gives secondary structures of 38% and 39% alpha-helix, 25% and 20% beta-sheet, and 37% and 41% undefined structure for the human and hen lysozymes, respectively.  相似文献   

5.
The egg white of C. atratus contains two forms of lysozyme, a 'chick-type' which is similar to that found in the egg white of the domestic hen, and a 'goose-type' similar to that found in the egg white of the Embden goose. The molecular structure of the goose-type lysozyme has been determined at a resolution of a 2.8 A by X-ray crystallographic analysis. The structure consists of two domains linked by a long stretch of alpha-helix. In all, there are seven helical segments in the structure. While there is no amino acid sequence homology with either hen egg-white or bacteriophage T4 lysozymes, there are portions of the structure where the folding of the main chain is similar to that found in portions of either hen egg-white lysozyme or T4 lysozyme or both. In particular, there is a consistency of structure in the arrangement of acid groups in the catalytic site. G-o plots calculated for this structure and for the bacteriophage T4 lysozyme structure show that both have similar 'modules' of structure with boundaries occurring at structurally equivalent positions. Three of the common boundaries are equivalent structurally to three of the four module boundaries observed in G-o plots of hen egg-white lysozyme. The variation in the position of the remaining boundary may be related to differences in substrate binding.  相似文献   

6.
Amino acid sequence of a lysozyme (B-enzyme) from Bacillus subtilis YT-25   总被引:1,自引:0,他引:1  
The amino acid sequence of a lysozyme, (B-enzyme), from Bacillus subtilis YT-25 was determined by conventional methods. B-Enzyme comprised 117 amino acid residues and had a heterogeneous sequence in the amino-terminal region. The amino acid sequence of B-enzyme was different from those of all other lysozymes the sequences of which are known. However, the partial amino acid sequence of Ser(74) to Ser(97) of B-enzyme was homologous with that of the active-site region of hen egg-white lysozyme (Ser(36) to Ser(60], which includes one of the catalytic amino acids, Asp(52). It is interesting that B-enzyme has an amino acid sequence homologous with that of the gag protein p25 of the AIDS virus ARV-2.  相似文献   

7.
Summary The purification of Ostrich (Struthio camelus) egg-white lysozyme is reported. The quantitative amino acid composition, the molecular weight, the N-terminal sequence (34 amino acids) as well as kinetic studies allow to range this enzyme among the goose type lysozymes.106th communication on lysozymes.  相似文献   

8.
An expression plasmid for hen egg-white lysozyme in Saccharomyces cerevisiae was constructed by inserting almost full-length cDNA (about 600 base pairs) encoding hen egg-white pre-lysozyme into a yeast expression vector, pAM 82. The hen lysozyme was expressed under the control of the repressible acid phosphatase promoter of pAM 82 in S. cerevisiae. About half of the expressed lysozyme was secreted in the yeast growth medium as a precise mature protein which exhibited specific activity consistent with that of authentic hen egg-white lysozyme. The replacement of Trp 62 of hen egg-white lysozyme with a tyrosine residue was performed by site-directed mutagenesis using a 19-mer oligodeoxyribonucleotide. The mutant lysozyme with Tyr 62 was found to exhibit enhanced bacteriolytic activity.  相似文献   

9.
The 70-kDa soluble lytic transglycosylase (SLT70) from Escherichia coli is a bacterial exo-muramidase that cleaves the cell wall peptidoglycan, producing 1,6-anhydro-muropeptides. The X-ray structure of SLT70 showed that one of its domains is structurally related to lysozyme, although there is no obvious similarity in amino acid sequence. To relate discrete structural features to differences in reaction mechanism and substrate/product specificity, we compared the threedimensional structure of the catalytic domain of SLT70 with the structures of three typical representatives of the lysozyme superfamily: chicken-type hen egg-white lysozyme, goosetype swan egg-white lysozyme, and phage-type lysozyme from bacteriophage T4. We find a particularly close relationship between the catalytic domain of SLT70 and goose-type lysozyme, with not only a significant similarity in overall structure, but even a weak homology in amino acid sequence. This finding supports the notion that the goose-type lysozyme takes up a central position in the lysozyme superfamily and that it is structurally closest to the lysozyme ancestors. The saccharide-binding groove is the most conserved part in the four structures, but only two residues are absolutely preserved: the “catalytic” glutamic acid and a structurally required glycine. The “catalytic” aspartate is absent in SLT70, a difference that can be related to a different mechanism of cleavage of the β-1,4-glycosidic bond. The unique composition of amino acids at the catalytic site, and the observation of a number of differences in the arrangements of secondary structure elements, define the catalytic domain of SLT70 as a novel class of lysozymes. Its fold is expected to be exemplary for other bacterial and bacteriophage muramidases with lytic transglycosylase activity. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Despite the low similarity between their amino acid sequences, the core structures of the fold between chicken-type and goose-type lysozymes are conserved. However, their enzymatic activities are quite different. Both of them exhibit hydrolytic activities, but the goose-type lysozyme does not exhibit transglycosylation activity. The chicken-type lysozyme has a retaining-type reaction mechanism, while the reaction mechanism of the goose-type lysozyme has not been clarified. To clarify the latter mechanism, goose egg-white lysozyme (GEL)-N-acetyl-D-glucosamine (GlcNAc)6 complexes were modelled and compared with hen egg-white lysozyme (HEL)-(GlcNAc)6 complexes. By systematic conformational search, 48 GEL-(GlcNAc)6 complexes were modelled. The right and left side, and the amino acid residues in subsites E-G were identified in GEL. The GlcNAc residue D could bind towards the right side without distortion and there was enough room for a water molecule to attack the C1 carbon of GlcNAc residue D from alpha-side in the right side and not for acceptor molecule. The result of molecular dynamics simulation suggests that GEL would be an inverting enzyme, and Asp97 would act as a second carboxylate and that the narrow space of the binding cleft at subsites E-G in GEL may prohibit the sugar chain to bind alternative site that might be essential for transglycosylation.  相似文献   

11.
The association constants for the binding of various saccharides to hen egg-white lysozyme and human lysozyme have been measured by fluorescence titration. Among these are the oligosaccharides GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-GlcNAc, GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-N-acetyl-D-xylosamine, and GlcNAc-beta(1 leads to 4-GlcNAc-beta(1 leads to 4)-MurNAc, prepared here for the first time. The binding constants for saccharides which must have N-acetylmuramic acid, N-acetyl-D-glucosamine, or N-acetyl-D-xylosamine bound in subsite D indicate that there is no strain involved in the binding of N-acetyl-D-glycosamine in this site, and that the lactyl group of N-acetylmuramic acid (rather than the hydroxymethyl group) is responsible for the apparent strain previously reported for binding at this subsite. For hen egg-white lysozyme, the dependence of saccharide binding on pH or on a saturating concentration of Gd(III) suggests that the conformation of several of the complexes are different from one another and from that proposed for a productive complex. This is supported by fluorescence difference spectra of the various hen egg-white lysozyme-saccharide complexes. Human lysozyme binds most saccharides studied more weakly than the hen egg-white enzyme, but binds GlcNAc-beta(1 leads to 4)-MurNAc-beta(1leads to 4)-GlcNAc-beta(1 leads to 4)-MurNAc more strongly. It is suggested that subsite C of the human enzyme is "looser" than the equivalent site in the hen egg enzyme, so that the rearrangement of a saccharide in this subsite in response to introduction of an N-acetylmuramic acid residue into subsite D destabilizes the saccharide complexes of human lysozyme less than it does the corresponding hen egg-white lysozyme complexes. This difference and the differences in the fluorescence difference spectra of hen egg-white lysozyme and human lysozyme are ascribed mainly to the replacement of Trp-62 in hen egg-white lysozyme by Tyr-63 in the human enzyme. The implications of our findings for the assumption of superposition and additivity of energies of binding in individual subsites, and for the estimation of the role of strain in lysozyme catalysis, are discussed.  相似文献   

12.
The amino acid sequence of Egyptian goose lysozyme (EGL) from egg-white and its enzymatic properties were analyzed. The established sequence had the highest similarity to wood duck lysozyme (WDL) with five amino acid substitutions, and had eighteen substitutions difference from hen egg-white lysozyme (HEL). Tyr34 and Gly37 were found at subsites E and F of the active site when compared with HEL. The experimental time-course characteristics of EGL against the N-acetylglucosamine pentamer substrate, (GlcNAc)(5), revealed higher production of (GlcNAc)(4) and lower production of (GlcNAc)(2) when compared with HEL. The saccharide-binding ability of subsites A-C in EGL was also found to be weaker than in HEL. An analysis of the enzymatic reactions of five mutants in respect of positions 34, 37 and 71 in HEL indicated the time-course characteristics of EGL to be caused by the combination of three substitutions (F34Y, N37G and G71R) between HEL and EGL. A computer simulation of the EGL-catalyzed reaction suggested that the time-course characteristics of EGL resulted from the difference in the binding free energy for subsites A, B, E and F and the rate constant of transglycosylation between EGL and HEL.  相似文献   

13.
A sensitive fluorimetric assay is described for the measurement of N-acetylmuramic acid l-alanine amidase as well as lysozyme. The method uses Bacillus subtilis cell walls labeled with fluorescamine on the free amino group of diaminopimelic acid. The method can easily detect the lytic activity of 0.02 μg of pure N-acetylmuramic acid l-alanine amidase in 30 min and of 1 μg of hen egg-white lysozyme in the same period. The method is particularly suitable for measurement of competition between various cell wall preparations for the same enzyme.  相似文献   

14.
Intestinal inflammatory diseases are mediated by dysregulated immune responses to undefined luminal antigens. Feeding hen egg-white lysozyme to mice expressing a transgenic T-cell receptor that recognizes hen egg-white lysozyme peptide 46-61 resulted in no intestinal pathology; however, simultaneous administration of cyclooxygenase-2 inhibitors and dietary hen egg-white lysozyme resulted in increased proliferation of lamina propria mononuclear cells and crypt epithelial cells, crypt expansion and villus blunting. Lamina propria mononuclear cells produce high levels of cyclooxygenase-2-dependent arachidonic acid metabolites, which act as immunomodulators in the immune response to dietary antigen. These findings establish that cyclooxygenase-2-dependent arachidonic acid metabolites are essential in the development and maintenance of intestinal immune homeostasis.  相似文献   

15.
Human lysozyme and hen egg-white lysozyme have antibacterial, antiviral, and antifungal properties with numerous potential commercial applications. Currently, hen egg-white lysozyme dominates low cost applications but the recent high-level expression of human lysozyme in rice could provide an economical source of lysozyme. This work compares human lysozyme and hen egg-white lysozyme adsorption to the cation exchange resin, SP-Sepharose FF, and the effect of rice extract components on lysozyme purification. With one exception, the dynamic binding capacities of human lysozyme were lower than those of hen egg-white at pH 4.5, 6, and 7.5 with ionic strengths ranging from 0 to 100 mM (5-20 mS). Ionic strength and pH had a similar effect on the adsorption capacities, but human lysozyme was more sensitive to these two factors than hen egg-white lysozyme. In the presence of rice extract, the dynamic binding capacities of human and hen egg-white lysozymes were reduced by 20-30% and by 32-39% at pH 6. Hen egg-white lysozyme was used as a benchmark to compare the effectiveness of human lysozyme purification from transgenic rice extract. Process simulation and cost analyses for human lysozyme purification from rice and hen egg-white lysozyme purification from egg-white resulted in similar unit production costs at 1 ton per year scale.  相似文献   

16.
The kinetics of the hydrogen-deuterium exchange reaction in bovine α-lactalbumin have been followed, by infrared absorption measurement, in aqueous solutions at various pH values and at various temperatures. A thermal transition which takes place at about 60 °C has been examined by ultraviolet absorption measurement and circular dichroism measurement.Outlines of the exchange kinetics and the thermal transition are quite similar to those observed for hen egg-white lysozyme, the amino acid sequence of which is known to be very similar to that of α-lactalbumin. Between these two proteins, however, differences have been found in the following respects. (1) The number of slowly exchanging peptide hydrogen atoms (35 in α-lactalbumin compared with 44 in egg-white lysozyme). (2) Kinetic profile of the slow exchange reaction. (3) The midpoint of the thermal transition (54 °C in water and 58 °C in deuterium oxide for α-lactalbumin, compared with 76 °C in both water and deuterium oxide for egg-white lysozyme). (4) The enthalpy and entropy changes in the transition (72 kcal/mol and 220 e.u., respectively, for α-lactalbumin, compared with 127 kcal/mol and 364 e.u. for egg-white lysozyme). (5) The circular dichroic spectrum of the “unfolded” molecule. (6) The effective amount of the unfolded forms estimated from the kinetic measurement at temperatures slightly lower than the transition temperature. (7) The effect of pH on the exchange kinetics.These differences between the proteins are interpreted in terms of the molecular structures and their fluctuations.  相似文献   

17.
A novel toad lysozyme (named BA-lysozyme) was purified from skin secretions of Bufo andrewsi by a three-step chromatography procedure. BA-lysozyme is a single chain protein and the apparent molecular weight is about 15 kDa as judged by SDS-PAGE. The specific lytic activity against Micrococcus lysodeikticus of BA-lysozyme is 2.7 x 10(5) units/mg, indicating that it is a potent lysozyme. It displayed potent bactericidal activity against Staphylococcus aureus and Escherichia coli with minimal inhibitory concentrations (MIC) of 1 and 8 microM, respectively. The deduced primary structure of BA-lysozyme from cloned cDNA was confirmed by N-terminal sequencing and peptide mass fingerprinting. Its amino acid sequence shares 56.5% identity with that of chicken egg-white lysozyme. Phylogenetic analysis indicates that B. andrewsi lysozyme is closely related to that of turtle. This is the first report on the isolation and primary structure determination of amphibian lysozyme.  相似文献   

18.
The binding of 125I-labelled egg-white lysozyme to isolated brush border membranes of rat kidney cortex was investigated. The lysozyme binding was reversible and saturable. The Scatchard plot revealed a one-component binding type with a dissociation constant of 7.8 μM and 15.6 nmol/mg membrane protein for the number of binding sites. The binding of the basic lysozyme could be reduced by basic amino acids such as l-lysine, l-ornithine or l-arginine, while neutral amino acids such as l-citrulline or l-alanine had no effect. The inhibitory effect of lysine was competitive.  相似文献   

19.
不同来源溶菌酶的性质比较   总被引:3,自引:0,他引:3  
比较两种从新鲜鸡蛋清中提取溶菌酶的方法。采用较为简单的并且产率较高的结晶法分别从鸡蛋清、鹌鹑蛋清中提取了溶菌酶 ,并分别测定了各溶菌酶的酶活力、最适pH值和最适温度。同时 ,证明了该法无法从鸭蛋清中提取出纯溶菌酶 ,故仅对粗提物进行了酶活力、最适 pH值和最适温度的测定  相似文献   

20.
Multiple genes of the hoatzin encoding stomach lysozyme c and closely related members of this calcium-binding lysozyme c group were cloned from a genomic DNA library and sequenced. There are a minimum of five genes represented among these sequences that encode two distinct groups of protein sequences. One group of three genes corresponds to the stomach lysozyme amino acid sequences, and the remaining genes encode predicted proteins that are more basic in character and share several sequence identities with the pigeon egg-white lysozyme rather than with the hoatzin stomach lysozymes. Despite these structural similarities between some of the hoatzin gene products and the pigeon lysozyme, phylogenetic analyses indicate that all of the hoatzin sequences are closely related to one another. This is borne out by the relatively small genetic distances even in the intronic regions, which are not subject to the selective pressures operating on the coding regions of the stomach lysozymes. These results suggest that multiple gene duplication events have occurred during the evolution of hoatzin lysozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号