首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The muscarinic stimulation of adenylate cyclase activity in rat olfactory bulb was characterized, with the aim of elucidating the nature of the molecular mechanism involved. Carbachol (CCh) stimulated the enzyme activity in either crude or purified cell membrane preparations and increased cyclic AMP accumulation in miniprisms of olfactory bulb. The CCh stimulation of adenylate cyclase activity displayed a fast onset and was rapidly reversed by addition of atropine. The stimulation was associated with an increase in the apparent Vmax of the enzyme, with no change in the Km for Mg-ATP. The affinity of the enzyme for Mg2+ was enhanced by CCh. The muscarinic effect required GTP at concentrations higher than those needed for enzyme stimulation with either l-isoproterenol or vasoactive intestinal peptide. Moreover, contrary to the beta-adrenergic stimulation, the muscarinic effect disappeared when guanosine 5'-O-(3'-thiotriphosphate) was substituted for GTP. In vivo treatment of olfactory bulbs with pertussis toxin completely prevented the muscarinic stimulation of adenylate cyclase, whereas cholera toxin was without effect. These results indicate that in rat olfactory bulb muscarinic receptors increase adenylate cyclase activity by interacting with a pertussis toxin-sensitive GTP-binding protein different from the stimulatory GTP-binding protein.  相似文献   

2.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

3.
We reported previously that in homogenates of rat olfactory bulb muscarinic and opioid receptor agonists stimulate adenylyl cyclase activity. In the present study we show that carbachol (CCh) and Leu-Enkephalin act synergistically with vasoactive intestinal peptide (VIP) and corticotropin-releasing hormone (CRH), but not with /-isoproterenol, in increasing cyclic AMP formation. The synergistic interaction consists of an increase in the maximal a0denylyl cyclase activation without a significant change in the potency of each agonist. CCh also fails to affect 125ICRH binding to olfactory bulb membranes. The synergism requires micromolar concentrations of GTP. Substitution of the stable GTP analog guanosine 5′-O-(3′-thiotriphosphate) for GTP allows the CRH stimulation, but abolishes the CCh enhancement of both basal and CRH-stimulated enzyme activities. Moreover, in vivo treatment of olfactory bulbs with pertussis toxin completely prevents the muscarinic and opioid effects. Thus, the synergistic interaction appears to result from opioid- and muscarinic-induced activation of a pertussis toxin-sensitive GTP-binding protein which may potentiate the adenylyl cyclase stimulation by the stimulatory GTP-binding protein activated by either VIP or CRH receptors.  相似文献   

4.
Abstract: In the olfactory bulb, muscarinic receptors exert a bimodal control on cyclic AMP, enhancing basal and Gs-stimulated adenylyl cyclase activities and inhibiting the Ca2+/calmodulin- and forskolin-stimulated enzyme activities. In the present study, we investigated the involvement of G protein βγ subunits by examining whether the muscarinic responses were reproduced by the addition of βγ subunits of transducin (βγt) and blocked by putative βγ scavengers. Membrane incubation with βγt caused a stimulation of basal adenylyl cyclase activity that was not additive with that produced by carbachol. Like carbachol, βγt potentiated the enzyme stimulations elicited by vasoactive intestinal peptide and corticotropin-releasing hormone. RT-PCR analysis revealed the expression of mRNAs encoding both type II and type IV adenylyl cyclase, two isoforms stimulated by βγ synergistically with activated Gs. In addition, βγt inhibited the Ca2+/calmodulin- and forskolin-stimulated enzyme activities, and this effect was not additive with that elicited by carbachol. Membrane incubation with either one of two βγ scavengers, the GDP-bound form of the α subunit of transducin and the QEHA fragment of type II adenylyl cyclase, reduced both the stimulatory and inhibitory effects of carbachol. These data provide evidence that in rat olfactory bulb the dual regulation of cyclic AMP by muscarinic receptors is mediated by βγ subunits likely acting on distinct isoforms of adenylyl cyclase.  相似文献   

5.
We investigated the effect of acetylcholine (ACh) on the activation of adenylate cyclase by dopamine (DA) in a lysed synaptosomal preparation from rat striatum. ACh reduced both basal and the DA-activated adenylate cyclase with an apparent IC50 of approximately 1 microM. From a kinetic analysis it appeared that ACh reduced the Vmax for activation by DA but not the activation constant for DA. For most preparations the Vmax was reduced by 30-40%. The presence of atropine did not affect the activation of the enzyme by DA but it blocked the inhibition by ACh. Following 6-hydroxydopamine lesion of the nigrostriatal pathway, the enzyme became supersensitive to activation by DA and also more sensitive to inhibition by ACh. Inhibition of adenylate cyclase by ACh appeared to be rather specific for activation by DA, as ACh had no effect on activation of adenylate cyclase by the adenosine analogue N6-(L-2-phenylisopropyl)adenosine. These results indicate that some striatal muscarinic and dopaminergic receptors are probably coupled to the same adenylate cyclase domain. Moreover, they suggest a biochemical model for the dynamic balance of cholinergic and dopaminergic neurons that innervate the striatum.  相似文献   

6.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

7.
The inhibition of adenylate cyclase from rat striatal plasma membranes by guanyl-5'-yl-imidodiphosphate [Gpp(NH)p] and morphine was compared to determine whether Gpp(NH)p-mediated inhibition accurately reflected hormone-mediated inhibition in this system. Inhibition of adenylate cyclase activity by Gpp(NH)p and morphine was examined with respect to temperature, divalent cation concentration, and the presence of Ca2+/calmodulin (Ca2+/CaM). Gpp(NH)p-mediated inhibition was dependent on the presence of Ca2+/CaM at 24 degrees C; the inhibition was independent of Ca2+/CaM at 18 degrees C; and inhibition could not be detected in the presence, or absence, of Ca2+/CaM at 30 degrees C. In contrast, naloxone-reversible, morphine-induced inhibition of adenylate cyclase was independent of both temperature and the presence of Ca2+/CaM. Mg2+ dose-response curves also reinforced the differences in the Ca2+/CaM requirement for Gpp(NH)p- and morphine-induced inhibition. Because Gpp(NH)p-mediated inhibition was independent of Ca2+/CaM at low basal activities (i.e., 18 degrees C, or below 1 mM Mg2+) and dependent on the presence of Ca2+/CaM at higher basal activities (24 degrees C, or above 1 mM Mg2+), the inhibitory effects of Gpp(NH)p were examined at 1 mM Mg2+ in the presence of 100 nM forskolin. Under these conditions, both Gpp(NH)p- and morphine-induced inhibition of adenylate cyclase were independent of Ca2+/CaM. The results demonstrate that the requirement for Ca2+/CaM to observe Gpp(NH)p-mediated inhibition depends on the basal activity of adenylate cyclase, whereas hormone-mediated inhibition is Ca2+/CaM independent under all conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: In membranes of rat olfactory bulb, a brain region in which muscarinic agonists increase cyclic AMP formation, the muscarinic stimulation of guanosine 5'- O -(3-[35S]thiotriphosphate) ([35S]GTPγS) binding was used as a tool to investigate the receptor interaction with the guanine nucleotide-binding regulatory proteins (G proteins). The stimulation of the radioligand binding by carbachol (CCh) was optimal (threefold increase) in the presence of micromolar concentrations of GDP and 100 m M NaCl. Exposure to N -ethylmaleimide and pertussis toxin markedly inhibited the CCh effect, whereas it increased the relative stimulation of [35S]GTPγS binding elicited by pituitary adenylate cyclase-activating polypeptide (PACAP). On the other hand, membrane treatment with cholera toxin curtailed the PACAP stimulation of [35S]GTPγS binding but did not affect the response to CCh. Like CCh, a number of cholinergic agonists stimulated [35S]GTPγS binding in a concentration-dependent and saturable manner. The antagonist profile of the muscarinic stimulation of [35S]GTPγS binding was highly correlated with that displayed by the muscarinic stimulation of adenylyl cyclase. These data indicate that the olfactory bulb muscarinic receptors couple to Gi/Go, but not to Gs, and support the possibility that activation of Gi/Go mediates the stimulatory effect on adenylyl cyclase activity.  相似文献   

9.
Chronic inhibition of acetylcholinesterase activity by treatment with diisopropylfluorophosphate (DFP) decreased the capacity of acetylcholine (ACh) acting at a muscarinic receptor to inhibit basal adenylate cyclase activity in homogenates from rat striatum. There was also a loss of the capacity of ACh to inhibit the activation of adenylate cyclase by dopamine. The desensitization of the muscarinic receptor adenylate cyclase complex was associated with a marked attenuation of the capacity of ACh to stimulate a high-affinity GTPase activity present in striatal membranes. The EC50 value of ACh for inhibiting adenylate cyclase and for stimulating GTPase activity increased following treatment with DFP, while the Hill coefficient for both responses was unaltered.  相似文献   

10.
Corticotropin-releasing factor (CRF) stimulates rat retinal adenylate cyclase activity in a concentration-dependent manner. The half-maximal effect is obtained at 50 nM CRF and the maximal stimulation corresponds to approximately 90% increase of basal enzyme activity. The CRF effect is counteracted by the CRF antagonist alpha-helical CRF 9-41 with a Ki value of 40 nM. Other CRF-like peptides such as sauvagine and urotensin I are as effective as CRF with a rank order of potency of urotensin I greater than or equal to sauvagine greater than CRF. The sauvagine and urotensin I effects are not additive with that elicited by CRF. Moreover, the CRF stimulation is not additive with the increase of enzyme activity produced by vasoactive intestinal peptide or dopamine. The CRF effect is independent of the concentration of free Ca2+, is optimal at 5-10 mM MgCl2, and requires GTP. The results indicate that rat retinal adenylate cyclase is modulated by CRF via a receptor-mediated mechanism.  相似文献   

11.
Opiate agonists inhibit adenylate cyclase in brain membranes, but under normal conditions the maximal inhibition is small (10-15%). When rat brain membranes were preincubated at pH 4.5, washed, and then assayed for adenylate cyclase at pH 7.4, stimulation of activity by agents (fluoride, guanylyl-5'-imidodiphosphate, cholera toxin) that act through the stimulatory GTP-binding coupling protein (Gs) protein was lost. At the same time, inhibition of basal adenylate cyclase by opiate agonists was increased to a maximum of 30-40%. Opiate inhibition was maximal at low magnesium concentrations (less than 5 mM), required guanine nucleotides, and decreased the Vmax, not Km, of the enzyme. Incubation of membranes with pertussis toxin lowered the apparent affinity for agonists in inhibiting activity. The delta opioid agonists were more potent than mu agonists, and the Ke values for naloxone in blocking agonist inhibition were similar for both mu and delta agonists (50-90 nM). These results suggest that inhibition of adenylate cyclase in brain is not mediated by mu opiate receptors, but whether classic high-affinity delta and kappa receptors are involved with this enzyme cannot be confirmed by these experiments.  相似文献   

12.
Histamine stimulated the enzymatic synthesis of phosphatidylcholine from phosphatidylethanolamine in crude synaptic membranes of rat brain containing the methyl donor S-adenosyl-L-methionine (SAM). In the presence of, but not in the absence of SAM, histamine increased cyclic AMP accumulation at the concentrations that stimulate phospholipid methylation. S-Adenosyl-L-homocysteine, an inhibitor of phospholipid methyltransferases, inhibited histamine-stimulated phospholipid methylation and histamine-induced cyclic AMP accumulation in the presence of SAM in a concentration-dependent manner. Histamine-induced [3H]methyl incorporation into phospholipids exhibited a marked regional heterogeneity in rat brain in the order of cortex greater than medulla oblongata greater than hippocampus greater than striatum greater than midbrain greater than hypothalamus. The regional distribution of histamine-induced cyclic AMP accumulation exactly paralleled histamine-stimulated [3H]methyl incorporation in rat brain. Histamine-induced cyclic AMP accumulation was inhibited by the addition of cimetidine or famotidine, but not by mepyramine or diphenhydramine. The accumulation of cyclic AMP in the presence of SAM was observed by the addition of impromidine or dimaprit, but not by 2-pyridylethylamine. These results indicate that phospholipid methylation is induced by histamine and may participate in H2-receptor-mediated stimulation of adenylate cyclase in rat brain.  相似文献   

13.
The 29-amino-acid peptide galanin (GAL) caused concentration-dependent inhibition of the accumulation of 3H-inositol phosphates (3H-InsPs) induced by the muscarinic agonist carbachol (CARB; 10(-3)-10(-5) M) in the presence of 5 mM lithium, specifically in tissue miniprisms from rat ventral hippocampus. The inhibitory effect of GAL involved the mono-, bis-, tris-, and tetrakisphosphates formed during activation for 2 min of phospholipase C by CARB (1 mM) in the absence of lithium. GAL (1 microM) did not affect alpha-adrenergic or serotonergic type 2 receptor-mediated phosphoinositide (PI) breakdown in the same tissue. GAL by itself neither acted on basal levels of 3H-InsPs nor affected muscarinic receptors in binding studies. Blockade of the T-, N-, and L-types of voltage-sensitive calcium channel (VSCC) with 200 microM Cd2+ reduced muscarinic receptor-mediated PI breakdown by 50% and abolished the inhibitory effect of GAL (1 microM). Reduction of the extracellular Ca2+ concentration from 1.3 mM to 0.49 microM abolished the GAL inhibition of CARB-stimulated PI hydrolysis. Ca2+ influx promoted by 18 mM K+ depolarization or by 1 microM Bay K 8644, a selective agonist of the L-type VSCC, prevented the inhibitory effect of GAL. Blockade of the L-type VSCC with nifedipine (1 microM) potentiated the inhibitory effects of GAL without affecting muscarinic stimulation of PI breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The inhibition of forskolin-stimulated adenylate cyclase activity by 5-hydroxytryptamine (5-HT) receptor agonists was measured in rat hippocampal membranes isolated from animals treated with vehicle or islet-activating protein (IAP; pertussis toxin). In vehicle-treated animals, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, and gepirone were potent in inhibiting forskolin-stimulated adenylate cyclase activity with EC50 values of 60, 76, 376, and 530 nM, respectively. IAP treatment reduced by 30-55% the 5-HT1A agonist inhibition of adenylate cyclase activity via 5-HT1A receptors. The data indicate that the inhibitory guanine nucleotide-binding protein or Go (a similar GTP-binding protein of unknown function purified from brain) mediates the 5-HT1A agonist inhibition of hippocampal adenylate cyclase.  相似文献   

15.
Abstract: 4β-Phorbol 12-myristate 13-acetate (PMA), added to a lysed mitochondrial fraction of rat striatum, stimulates adenylate cyclase activity with an apparent time lag of ~30 s. Half-maximal and maximal enzyme stimulations are obtained with 8 and 200 nM PMA, respectively. The PMA stimulation is GTP dependent, reaching a maximum of ~60% at 50 μ.M GTP, and is associated with disappearance of the enzyme inhibition induced by micromolar concentrations of GTP. Enhancement of enzyme activity by cholera toxin and 3,4-dihydroxyphenylethylamine is amplified by PMA only at micromolar concentrations of GTP. PMA does not affect the enzyme stimulation by forskolin but reverses the inhibition of forskolin-stimulated enzyme by GTP. When guanyl-5′-yl-imidodiphosphate is substituted for GTP, PMA does not modify adenylate cyclase activity. Enzyme inhibition by acetylcholine, Leu-enkephalin, and R(-)N6-(2-phenylisopropyl)adenosine is magnified by PMA. Stimulation of adenylate cyclase by PMA is markedly reduced following EGTA treatment, is not observed when adenyl-5′-yl-imidodiphosphate is substituted for ATP as substrate for adenylate cyclase, and is enhanced by l-α-phosphatidyl-l-serine. Like PMA, 4β-phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol stimulate striatal adenylate cyclase, whereas 4β-phorbol and 4β-phorbol 13-acetate are ineffective. The results indicate that phorbol esters increase striatal adenylate cyclase activity by reducing the GTP-induced inhibition of the enzyme, presumably as a result of protein kinase C activation.  相似文献   

16.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

18.
Rats receiving injections of specific antagonists of dopamine receptors (SCH 23390 for D1, haloperidol for D2, and haloperidol+SCH 23390) once daily for 21 days develop a selective supersensitivity of the blocked receptors. To study the molecular correlates of these adaptive changes, we evaluated the involvement of GTP-binding proteins in the development of supersensitivity of dopamine receptors. By means of adenylate cyclase studies, we tested whether any of the treatments modified the functional response to GTP in striata dissected from control and treated rats. Our data show that the chronic blockade of D1 and/or D2 receptors potentiates both basal and dopamine receptor-stimulated adenylate cyclase activity in response to GTP. D1 receptor up-regulation correlates with an increased adenylate cyclase response to GTP, whereas D2 receptor up-regulation is accompanied by an enhanced GTP-induced inhibition of enzyme activity, in both basal and receptor-activated conditions. This potentiation does not seem to match the changes in mRNA content of Gs and Gi alpha subunits. Unexpectedly, however, a significant increase in Gi alpha subunit mRNA was found after the chronic blockade of D1 receptors; this result could be explained by cross-regulation between GTP-binding protein-mediated pathways. This cross-regulation could serve as a protective mechanism whereby cells exposing up-regulated receptors protect themselves from a condition of hyperactivity of the adenylate cyclase enzyme.  相似文献   

19.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

20.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号