首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In pregnant-rat myometrium (day 21 of gestation), isoprenaline-induced cyclic AMP accumulation, resulting from receptor-mediated activation of adenylate cyclase, was negatively regulated by prostaglandins [PGE2, PGF2 alpha; EC50 (concn. giving 50% of maximal response) = 2 nM] and by the muscarinic agonist carbachol (EC50 = 2 microM). PG-induced inhibition was prevented by pertussis-toxin treatment, supporting the idea that it was mediated by the inhibitory G-protein Gi through the inhibitory pathway of the adenylate cyclase. Both isoprenaline-induced stimulation and PG-evoked inhibition of cyclic AMP were insensitive to Ca2+ depletion. By contrast, carbachol-evoked attenuation of cyclic AMP accumulation was dependent on Ca2+ and was insensitive to pertussis toxin. The inhibitory effect of carbachol was mimicked by ionomycin. Indirect evidence was thus provided for the enhancement of cyclic AMP degradation by a Ca2(+)-dependent phosphodiesterase activity in the muscarinic-mediated effect. The attenuation of cyclic AMP elicited by carbachol coincided with carbachol-stimulated inositol phosphate (InsP3, InsP2 and InsP) generation, which displayed an almost identical EC50 (3 microM) and was similarly unaffected by pertussis toxin. Both carbachol effects were reproduced by oxotremorine, whereas pilocarpine (a partial muscarinic agonist) failed to induce any decrease in cyclic AMP accumulation and concurrently was unable to stimulate the generation of inositol phosphates. These data support our proposal for a carbachol-mediated enhancement of a Ca2(+)-dependent phosphodiesterase activity, compatible with the rises in Ca2+ associated with muscarinic-induced increased generation of inositol phosphates. They further illustrate that a cross-talk between the two major transmembrane signalling systems contributed to an ultimate decrease in cyclic AMP in the pregnant-rat myometrium near term.  相似文献   

2.
Both dibutyryl cAMP and carbachol stimulated amylase released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 microM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 microM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

3.
Calcium (Ca2+) ion concentrations that are achieved intracellularly upon membrane depolarization or activation of phospholipase C stimulate adenylate cyclase via calmodulin (CaM) in brain tissue. In the present study, this range of Ca2+ concentrations produced unanticipated inhibitory effects on the plasma membrane adenylate cyclase activity of GH3 cells. Ca2+ concentrations ranging from 0.1 to 0.8 microM exerted an increasing inhibition on enzyme activity, which reached a plateau (35-45% inhibition) at around 1 microM. This inhibitory effect was highly cooperative for Ca2+ ions, but was neither enhanced nor dependent upon the addition of CaM (1 microM) to EGTA-washed membranes. The inhibition was greatly enhanced upon stimulation of the enzyme by vasoactive intestinal peptide (VIP) and/or GTP. Prior exposure of cultured cells to pertussis toxin did not affect the inhibition of plasma membrane adenylate cyclase activity by Ca2+, although in these membranes, hormonal (somatostatin) inhibition was significantly attenuated. Maximally effective concentrations of Ca2+ and somatostatin produced additive inhibitory effects on adenylate cyclase. The addition of phosphodiesterase inhibitors demonstrated that inhibitory effects of Ca2+ were not mediated by Ca2(+)-dependent stimulation of a phosphodiesterase activity. These observations provide a mechanism for the feedback inhibition by elevated intracellular Ca2+ levels on cAMP-facilitated Ca2+ entry into GH3 cells, as well as inhibitory crosstalk between Ca2(+)-mobilizing signals and adenylate cyclase activity.  相似文献   

4.
The presence of adenosine receptors coupled to adenylate cyclase in rat heart sarcolemma is demonstrated in these studies. Heart sarcolemma was isolated by the hypotonic shock-Lithium bromide treatment method. This preparation contained negligible amounts (2-4%) of contamination by other subcellular organelles such as mitochondria, sarcoplasmic reticulum, and myofibrils as verified by electron microscopic examination. In addition this preparation was also devoid of endothelial cells, since angiotensin-converting enzyme activity was not detected in this preparation. N-Ethylcarboxamide adenosine (NECA), L-N6-phenylisopropyladenosine (PIA), and adenosine N'-oxide (Ado N'-oxide) were all able to stimulate adenylate cyclase in heart sarcolemma, but not in crude homogenate, with an apparent Ka of 3-7 microM. The activation of adenylate cyclase by NECA was dependent on the concentrations of metal ions such as Mg2+ or Mn2+. The maximal stimulation was observed at lower concentrations of the metal ions (0.2-0.5 mM). At 5 mM Mg2+ or Mn2+, the stimulation by NECA was completely abolished. The stimulatory effect of NECA on adenylate cyclase was also dependent on guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In addition, 2'-deoxyadenosine showed an inhibitory effect on adenylate cyclase. The myocardial adenylate cyclase was also stimulated by beta-adrenergic agonists, dopamine and glucagon, and inhibited by cholinergic agonists such as carbachol and oxotremorine. The stimulation of adenylate cyclase by NECA was found to be additive with maximal stimulation obtained by epinephrine. These data suggest that rat heart sarcolemma contains adenosine (Ra), beta-adrenergic, dopaminergic, glucagon, and cholinergic receptors, and the stimulation of adenylate cyclase by epinephrine and adenosine occurs by distinctly different mechanism or adenosine and epinephrine stimulate different cyclase populations.  相似文献   

5.
The muscarinic stimulation of adenylate cyclase activity in rat olfactory bulb was characterized, with the aim of elucidating the nature of the molecular mechanism involved. Carbachol (CCh) stimulated the enzyme activity in either crude or purified cell membrane preparations and increased cyclic AMP accumulation in miniprisms of olfactory bulb. The CCh stimulation of adenylate cyclase activity displayed a fast onset and was rapidly reversed by addition of atropine. The stimulation was associated with an increase in the apparent Vmax of the enzyme, with no change in the Km for Mg-ATP. The affinity of the enzyme for Mg2+ was enhanced by CCh. The muscarinic effect required GTP at concentrations higher than those needed for enzyme stimulation with either l-isoproterenol or vasoactive intestinal peptide. Moreover, contrary to the beta-adrenergic stimulation, the muscarinic effect disappeared when guanosine 5'-O-(3'-thiotriphosphate) was substituted for GTP. In vivo treatment of olfactory bulbs with pertussis toxin completely prevented the muscarinic stimulation of adenylate cyclase, whereas cholera toxin was without effect. These results indicate that in rat olfactory bulb muscarinic receptors increase adenylate cyclase activity by interacting with a pertussis toxin-sensitive GTP-binding protein different from the stimulatory GTP-binding protein.  相似文献   

6.
G Tiger  C J Fowler 《Life sciences》1991,48(13):1283-1291
The calcium and potassium ion dependency of the inositol phospholipid breakdown response to stimulatory agents has been investigated in rat cerebral cortical miniprisms. The calcium channel agonist BAY K-8644 (10 microM) potentiated the response to carbachol at 6 mM K+ when Ca2(+)-free, but not when 2.52 mM Ca2+ assay buffer was used. In Ca2(+)-free buffer, verapamil (10 microM) inhibited the response to carbachol at both 6 and 18 mM K+ but higher concentrations (30-300 microM) were needed when 2.52 mM Ca2+ was used. At these higher concentrations, however, verapamil inhibited the binding of 2 nM [3H]pirenzepine to muscarinic recognition sites. N-Methyl-D-Aspartate (NMDA, 100 microM) significantly reduced the basal phosphoinositide breakdown rate at 18 mM K+ at 1.3 mM Ca2+, but was without effect on the basal rate at other K+ and Ca2+ concentrations. In the presence of NMDA (100 microM) or quisqualate (100 microM), the responses to carbachol were reduced, the degree of reduction showing a complex dependency upon the assay K+ and Ca2+ concentrations used. These results indicate that the inositol phospholipid breakdown response to carbachol in cerebral cortical miniprisms can be modulated in a manner dependent upon the extracellular calcium and potassium concentrations used.  相似文献   

7.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

8.
1. Ca2+ and cAMP both act as intracellular second messengers of receptor activation. In neuronal tissue, Ca2+ acting via calmodulin can elevate cAMP levels. This regulation by Ca2+ provides a means whereby the elevation of intracellular [Ca2+] might modulate cAMP generation. 2. In the present studies, the impact of the Ca2+/calmodulin regulation on receptor-mediated stimulation of activity is compared in striatum and hippocampus--regions of differing sensitivity to Ca2+/camodulin. Ca2+/calmodulin stimulated striatal and hippocampal adenylate cyclase activity by 1.4- and 2.7-fold respectively, while dopamine and vasoactive intestinal peptide (VIP) stimulated the enzyme activity of these respective regions by 1.3- and 2-fold. 3. In the presence of Ca2+/calmodulin, the dopamine dose-response curve in the striatum was shifted upward, without alteration of the slope of the curve or of the maximal stimulation of activity elicited by dopamine. In the hippocampus, the ability of VIP to stimulate adenylate cyclase activity was reduced by the presence of calmodulin. 4. The dose dependence of these actions of calmodulin was examined. In the striatum, the stimulation of adenylate cyclase activity by 0.1 to 0.3 microM calmodulin obscured dopamine stimulation, while 1 to 10 microM was additive with the dopamine stimulation. In the hippocampus, all concentrations of calmodulin (0.1 to 10 microM) reduced VIP-mediated stimulation of enzyme activity. 5. These data suggest that the ratio of calmodulin-sensitive to calmodulin-insensitive adenylate cyclase activity varies in different rat brain regions and that, in those regions in which this ratio is low (e.g., rat striatum and most peripheral systems), calmodulin- and receptor-mediated activation of adenylate cyclase activity will be additive, while in those systems in which this ratio is high (e.g., most of the central nervous system), calmodulin will reduce receptor-mediated stimulation of enzyme activity.  相似文献   

9.
The characteristics of the release of endogenous dopamine and noradrenaline from rat brain synaptosomes were studied using HPLC with an electrochemical detector. The spontaneous release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. Also, the high-K+ (30 mM)-evoked release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. From these results, the ratio of the Ca2(+)-dependent component to the total release of noradrenaline seemed to be similar to that of dopamine. On the other hand, 20 microM La3+ or 1 microM diltiazem inhibited both the spontaneous and 30 mM K(+)-evoked release of dopamine by approximately 50-60% but inhibited neither the spontaneous nor the 30 mM K(+)-evoked release of noradrenaline. The K(+)-evoked rise in intrasynaptosomal Ca2+ concentration was mostly blocked in Ca2(+)-free medium or 100 microM La3(+)-containing medium but was only partially blocked by 20 microM La3+ or 1 microM diltiazem. These data indicate alternative possibilities in that the Ca2(+)-dependent release of noradrenaline might be less sensitive to a change of intracellular Ca2+ concentration than that of dopamine and that the calcium channels directly involved in the noradrenaline release may be more resistant to diltiazem and La3+ than those involved in the dopamine release.  相似文献   

10.
We reported previously that in homogenates of rat olfactory bulb muscarinic and opioid receptor agonists stimulate adenylyl cyclase activity. In the present study we show that carbachol (CCh) and Leu-Enkephalin act synergistically with vasoactive intestinal peptide (VIP) and corticotropin-releasing hormone (CRH), but not with /-isoproterenol, in increasing cyclic AMP formation. The synergistic interaction consists of an increase in the maximal a0denylyl cyclase activation without a significant change in the potency of each agonist. CCh also fails to affect 125ICRH binding to olfactory bulb membranes. The synergism requires micromolar concentrations of GTP. Substitution of the stable GTP analog guanosine 5′-O-(3′-thiotriphosphate) for GTP allows the CRH stimulation, but abolishes the CCh enhancement of both basal and CRH-stimulated enzyme activities. Moreover, in vivo treatment of olfactory bulbs with pertussis toxin completely prevents the muscarinic and opioid effects. Thus, the synergistic interaction appears to result from opioid- and muscarinic-induced activation of a pertussis toxin-sensitive GTP-binding protein which may potentiate the adenylyl cyclase stimulation by the stimulatory GTP-binding protein activated by either VIP or CRH receptors.  相似文献   

11.
The role of calcium-calmodulin (Ca2+-CaM) in the modulation of beta-adrenergic adenylate cyclase activity in rat cerebral cortex has been studied. In addition, the effects of manganese (Mn2+) and forskolin on CaM-dependent enzyme activity were investigated. At 2 mM magnesium (Mg2+) low concentrations of Ca2+ stimulated the enzyme activity (Ka 0.25 +/- 0.08 microM), whereas higher Ca2+ levels (greater than 2 microM) inhibited the activity. No activating effect of Ca2+ was observed in CaM-depleted membranes, but the inhibitory effect persisted and the stimulatory action of Ca2+ could be restored by addition of exogenous CaM. The ability of Ca2+ to activate the enzyme was reduced by increasing concentrations of Mg2+. At 10 mM Mg2+ the apparent Ka of Ca2+ was 0.55 +/- 0.16 microM and half-maximal inhibition was observed at 80-120 microM Ca2+. A synergistic effect was observed between Ca2+ and isoprenaline on the adenylate cyclase activity. Calcium did not alter the apparent Ka of isoprenaline (0.9 +/- 0.27 microM) and isoprenaline did not change the apparent Ka of Ca2+. However, isoprenaline decreased the apparent Ka of CaM; 0.11 +/- 0.07 micrograms vs. 0.32 +/- 0.1 micrograms (0.5 ml assay mixture)-1, with and without isoprenaline, respectively. A synergistic effect was also observed between Ca2+ and forskolin, but no change in their apparent Ka values was found. Furthermore, Mn2+ was found to activate the enzyme through CaM. These data demonstrate that Ca2+ -CaM potentiates beta-adrenergic adenylate cyclase activity and thus is able to modulate neurotransmitter stimulation in cortex. Furthermore, both forskolin and Mn2+ affect CaM-dependent enzyme activity. Forskolin potentiates Ca2+-CaM stimulation, while Mn2+ increases the activity by activating the enzyme through CaM.  相似文献   

12.
We have characterized odorant-stimulated adenylate cyclase activity in isolated chemosensory cilia prepared from frog and rat olfactory epithelium. Cilia from both species exhibit high levels of adenylate cyclase activity. Basal activity is stimulated approximately 2-fold by GTP and approximately 5-fold by guanosine 5'-(3-O-thio)triphosphate and forskolin. Odorants augment enzyme activity 30-65% above the basal level in a tissue-specific and GTP-dependent manner. Calcium reduces GTP-stimulated activity with a 50% effective concentration at 10 microM. Odorants vary in their influence upon olfactory adenylate cyclase activity. Most fruity, floral, minty, and herbaceous odorants stimulate the enzyme. 3,7-Dimethyl-2,6-octadienenitrile (citralva), menthone, D-carvone, L-carvone, and 2-isobutyl-3-methoxypyrazine display similar potencies in activating the adenylate cyclase upto concentrations of 100 microM. Putrid odorants, such as isovaleric acid, triethylamine, pyridine, thiazole, and methoxypyrazine, and odorous chemical solvents, do not stimulate enzyme activity. In homologous series of pyrazine, thiazole, and pyridine odorants, compounds with the longest hydrocarbon side chains are best able to enhance enzyme activity. The failure of certain odorants to affect adenylate cyclase activity suggests that additional transduction mechanisms besides the formation of cAMP are involved in olfaction.  相似文献   

13.
We have examined the inhibitory regulation by Ca2+ of the adenylate cyclase activity associated with microsomes isolated from bovine aorta smooth muscle. In the presence of 2 mM MgCl2, Ca2+ (0.8-100 microM) inhibited in a noncompetitive manner activation of the enzyme by GTP, Gpp[NH]p, or forskolin. In all instances the value for half-maximal inhibition was between 2 and 3 microM. In contrast, Ca2+ inhibited the activation by MgCl2 (2-50 mM), alone or in the presence of GTP, in a competitive manner. The inhibition of adenylate cyclase by 10 microM Ca2+ was reversed in the presence of either 5 or 25 microM calmodulin or troponin C. These data show that (i) Ca2+, at concentrations similar to those which activate smooth muscle contraction, inhibits the stimulation of adenylate cyclase by several activators; (ii) Ca2+ and Mg2+ compete for a common site on the smooth muscle adenylate cyclase complex; and (iii) the reversal of Ca2+-dependent inhibition by Ca2+-binding proteins may be produced by chelation of the metal by these proteins.  相似文献   

14.
Onali P  Olianas MC 《Life sciences》1995,56(11-12):973-980
In membranes of rat olfactory bulb, muscarinic receptor agonists stimulate basal adenylyl cyclase activity . This response is inhibited by a number of muscarinic receptor antagonists with a rank order of potency suggesting the involvement of the M4 muscarinic receptor subtype. The stimulatory effect does not require Ca2+ and occurs independently of activation of phosphoinositide hydrolysis. Pretreatment with pertussis toxin completely prevents the muscarinic stimulation of adenylyl cyclase, indicating the participation of G proteins of the Gi/Go family. Immunological impairment of the G protein, Gs, also reduces the muscarinic response, whereas concomitant activation of Gs-coupled receptors by CRH or VIP results in a synergistic stimulation of adenylyl cyclase activity. Although these data suggest a role for Gs, a body of evidence indicates that the muscarinic receptors do not interact directly with this G protein. Moreover, the Ca2+/calmodulin (Ca2+/CaM)- and forskolin-stimulated enzyme activities are inhibited by muscarinic receptor activation in a pertussis toxin-sensitive manner and with a pharmacological profile similar to that observed for the stimulatory response. These data indicate that in rat olfactory bulb M4 muscarinic receptors exert a bimodal control on cyclic AMP formation through a sequence of events that may involve activation of Gi/Go proteins, synergistic interaction with Gs and differential modulation of Ca2+/CaM-independent and -dependent forms of adenylyl cyclase.  相似文献   

15.
The objective of this work was to confirm that the contractile effects of ouabain and Na(+)-free solutions in guinea pig tracheal rings are associated with increments in the cytosolic free Ca2+ concentration ([Ca2+]i) in cultured tracheal smooth muscle (TSM) cells. Cultured cells were alpha-actin positive. Histamine (50 microM) and Na(+)-free solution elicited a transient increase in [Ca2+]i, while the responses to thapsigargin (1 microM) and ouabain (1 mM) were long lasting. However, carbachol (10, 200, and 500 mM) and high K(+)-solution produced no effect on [Ca2+]i, suggesting that cultured guinea pig TSM cells display a phenotype change but maintain some of the tracheal rings physiological properties. The transient rise in [Ca2+]i in response to the absence of extracellular Na+ and the effect of ouabain may indicate the participation of the Na(+)/Ca2+ exchanger (NCX) in the regulation of [Ca2+]i.  相似文献   

16.
Superfusion of striatal slices with a medium deficient in Ca2+ and Mg2+ caused a large and sustained increase in release of lactate dehydrogenase, a finding indicative of the disruption of plasma membranes. This was associated with an efflux of dopamine (DA) and the depletion of DA from the tissue. In addition, whereas DA efflux was stimulated by either D-amphetamine (10 microM) or L-glutamate (10 mM) in the absence of Ca2+, these effects were greatly reduced when Mg2+ also was withdrawn from the buffer. These results suggest that (a) incubation in a Ca2+/Mg2(+)-free buffer disrupts plasma membranes, (b) this disruption affects dopaminergic neurons as well as those of other striatal elements, and (c) the failure of a treatment to stimulate DA release in a Ca2+/Mg2(+)-free buffer cannot be used as a test of Ca2+ dependence.  相似文献   

17.
To test the hypothesis that phosphatidic acid (PhA) is involved in the carbachol inhibition of hormone stimulated accumulation of cAMP we observed the effects of PhA on PGE1-stimulation of cAMP in WI-38 fibroblasts. PhA inhibited PGE1-stimulated cAMP accumulation of WI-38 fibroblasts; maximum inhibition (approximately 50-80%) occurred at a PhA concentration of 1.0 microM and significant inhibition was observed with a concentration of 0.1 microM. The full effects of PhA were evident within 15 sec after the co-addition of PGE1 and PhA. Addition of PhA to cells which had been pre-stimulated with PGE1 resulted in the rapid decay of cAMP levels to a new steady state level with a t 1/2 of approximately 65 sec. The inhibition produced by PhA did not appear to be simply attributable to a depolarization or increased intracellular Ca2+, since addition of either KCl or the Ca2+ ionophore A23187 did not lower PGE1-stimulated cAMP accumulation. When intact cells were pretreated with PhA then lysed and adenylate cyclase immediately assayed, no detectable changes in broken cell adenylate cyclase activities were observed. Also, PhA added directly to adenylate cyclase assays at concentrations as high as 100 microM produced no detectable inhibition of the membrane fraction adenylate cyclase activities. Nonetheless, our results suggest that adenylate cyclase activity in intact cells may be directly affected by physiological levels of PhA . Further, the similarities of carbachol [Butcher, R. W., Journal of Cyclic Nucleotide Research, 4:411 (1978)] and PhA inhibition support the hypothesis that carbachol (acetylcholine) exerts its effect on adenylate cyclase through alterations of the plasma membrane phospholipid composition.  相似文献   

18.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

19.
Inhibition of a Low Km GTPase Activity in Rat Striatum by Calmodulin   总被引:1,自引:0,他引:1  
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Calmodulin antagonists inhibited hormone-stimulated cyclic AMP accumulation in both cultured cells and cell lysates of mouse B16 melanoma. Particulate preparations of B16 melanoma contained 34-45% of total cell calmodulin, which could not be dissociated by extensive washing irrespective of the presence of EGTA in the buffer. The adenylate cyclase activity in such preparations was unaffected by the addition of exogenous calmodulin. However, the rare-earth-metal ion La3+, which can mimic or replace Ca2+ in many systems, produced an immediate inhibition of agonist-stimulated adenylate cyclase activity and preincubation of particulate preparations was La3+ followed by washing with La3+-free buffer dissociated calmodulin (96% loss) from particulate preparations. The loss of calmodulin from particulate preparations was associated with a decrease in agonist responsiveness (74%) and a marked change in the Ca2+-sensitivity of the enzyme, low concentrations of calcium (approx. 10 nM) now failing to stimulate enzyme activity, high concentrations of calcium (greater than or equal to 100 nM) producing greater-than-normal inhibition of enzyme activity. Direct activation of adenylate cyclase by the addition of pure calmodulin was now demonstrable in such calmodulin-depleted particulate preparations. Half-maximal stimulation of agonist-responsive adenylate cyclase occurred at 80 nM-calmodulin in the presence of 10 microM free Ca2+. Maximal stimulation by calmodulin (at 300-600 nM) restored enzyme activity to 89 +/- 5% (mean +/- S.E.M., n = 7) of the activity in untreated, calmodulin-intact, preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号