首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma B  Rong W  Dunn PM  Burnstock G 《Life sciences》2005,76(22):2547-2558
The effects of 17beta-estradiol on the alpha,beta-me ATP-induced currents were studied on dorsal root ganglion (DRG) neurons using whole-cell recording technique. Three types of currents (transient, sustained or biphasic) were evoked by alpha,beta-me ATP in acutely dissociated DRG neurons. When neurons were pre-incubated with 17beta-estradiol (10-1000 nM) for 4 min, an inhibition of the transient current and the transient component of the biphasic current was observed. In contrast, 17beta-estradiol did not have any significant effect on the sustained current evoked by alpha,beta-meATP. The inhibitory effects were concentration-dependent, reversible and could be blocked by the estradiol receptor inhibitor, ICI 182,780 (1 microM). However, bovine serum albumin-conjugated 17beta-estradiol (17beta-estradiol-BSA, 10 nM) failed to mimic the effects of 17beta-estradiol. 17alpha-estradiol, the inactive isoform, did not have significant effects on alphabeta-meATP-induced currents, either. Sustained currents induced by ATP (100 microM) in nodose ganglion (NG), superior cervical ganglion (SCG) and otic ganglion (OTG) neurons were not affected by 17beta-estradiol. These results suggest that the female gonadal hormone, 17beta-estradiol, might participate in control of pain by modulating P2X3 receptor-mediated events in sensory neurons.  相似文献   

2.
We investigated the effects of 17beta-estradiol, an estrogen, on [(3)H]norepinephrine ([(3)H]NE) secretion in PC12 cells. Pretreatment with 17beta-estradiol reduced 70 mM K(+)-induced [(3)H]NE secretion in a concentration-dependent manner with a half-maximal inhibitory concentration (IC(50)) of 2 +/- 1 microM. The 70 mM K(+)-induced cytosolic free Ca(2+) concentration ([Ca(2+)](i)) rise was also reduced when the cells were treated with 17beta-estradiol (IC(50) = 15 +/- 2 microM). Studies with voltage-sensitive calcium channel (VSCC) antagonists such as nifedipine and omega-conotoxin GVIA revealed that both L- and N-type VSCCs were affected by 17beta-estradiol treatment. The 17beta-estradiol effect was not changed by pretreatment of the cells with actinomycin D and cycloheximide for 5 h. In addition, treatment with pertussis or cholera toxin did not affect the inhibitory effect of 17beta-estradiol. 17beta-Estradiol also inhibited the ATP-induced [(3)H]NE secretion and [Ca(2+)](i) rise. In PC12 cells, the ATP-induced [Ca(2+)](i) rise is known to occur through P2X(2) receptors, the P2Y(2)-mediated phospholipase C (PLC) pathway, and VSCCs. 17beta-Estradiol pretreatment during complete inhibition of the PLC pathway and VSCCs inhibited the ATP-induced [Ca(2+)](i) rise. Our results suggest that 17beta-estradiol inhibits catecholamine secretion by inhibiting L- and N-type Ca(2+) channels and P2X(2) receptors in a nongenomic manner.  相似文献   

3.
Whole-cell patch clamp and polarographic oxygen partial pressure (pO2) measurements were used to establish the sensitivity of high-voltage-activated (HVA) Ca2+ channel subtypes of CA1 hippocampal neurons of rats to hypoxic conditions. Decrease of pO2 to 15-30 mm Hg induced a potentiation of HVA Ca2+ currents by 94%. Using selective blockers of N- and L-types of calcium channels, we found that inhibition of L-type channels decreased the effect by 54%, whereas N-type blocker attenuated the effect by 30%. Taking into account the ratio of currents mediated by these channel subtypes in CA1 hippocampal neurons, we concluded that both types of HVA Ca2+ channels are sensitive to hypoxia, however, L-type was about 3.5 times more sensitive to oxygen reduction.  相似文献   

4.
Wong CM  Tsang SY  Yao X  Chan FL  Huang Y 《Steroids》2008,73(3):272-279
HYPOTHESIS: Potassium (K(+)) channel activation contributes in part to estrogen-mediated vasorelaxation. However, the underlying mechanism is still unclear. We hypothesize that estrogen increases K(+) currents via membrane-associated, non-genomic interaction and that steroid hormones have differential effects on different types of K(+) channels. EXPERIMENTAL: Human large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) and human voltage-gated K(+) channels (K(V1.5)) were expressed in Xenopus oocytes, and K(+) currents elicited by voltage clamp were measured. RESULTS: Both 17beta-estradiol and BSA-conjugated 17beta-estradiol increased the BK(Ca) current in a concentration-dependent manner and this effect was abolished by tetraethylammonium ions and iberiotoxin (putative BK(Ca) channel blockers). 17beta-estradiol-stimulated increase in the BK(Ca) current was unaffected by treatment with ICI 182,780 (classic estrogen receptor antagonist), tamoxifen (estrogen receptor agonist/antagonist), actinomycin D (RNA synthesis inhibitor), or cycloheximide (protein synthesis inhibitor). In contrast, progesterone reduced the BK(Ca) current in the absence or presence of NS 1619 (BK(Ca) channel activator). Progesterone also inhibited 17beta-estradiol-stimulated increase in the BK(Ca) current. Finally, progesterone but not 17beta-estradiol reduced the K(V1.5) current. CONCLUSIONS: The present results show that 17beta-estradiol stimulates BK(Ca) channels without affecting K(V1.5) channels. This effect is ICI 182,780-insensitive and is likely mediated via a membrane-bound binding site. Progesterone inhibits both BK(Ca)- and K(V1.5)-encoded currents. The present results suggest that inhibition of K(+) channels may contribute in part to its reported antagonism against 17beta-estradiol-mediated vascular relaxation via BK(Ca) channels.  相似文献   

5.
A previous study showed that antitumor-analgesic peptide (AGAP), a novel recombinant polypeptide, which had been expressed in Escherichia coli, exhibits analgesic and antitumor effects in mice. In the present study, we investigated the underlying analgesic mechanism of AGAP. The effect of AGAP on voltage-gated calcium channels (VGCCs) was assessed in acutely isolated rat dorsal root ganglia (DRG) neurons using the whole-cell patch clamp technique. The results showed that AGAP potently inhibited VGCCs, especially high-voltage activated (HVA) calcium channels. AGAP inhibited HVA and T-type calcium currents in a dose-dependent manner, but had no significant effect on their dynamic functions in rat small-diameter DRG neurons. AGAP inhibited N- and L-type calcium currents at 78.2% and 57.3%, respectively. Thus, the present study demonstrates that AGAP affects calcium currents through the inhibition of N-, L- and T-type channels in DRG neurons, explaining the potential mechanisms of antinociception.  相似文献   

6.
Stimulation of postsynaptic M(1) muscarinic receptors (M(1)Rs) increases firing rates of both sympathetic and central neurons that underlie increases in vasomotor tone, heart rate, and cognitive memory functioning. At the cellular level, M(1)R stimulation modulates currents through various voltage-gated ion channels, including KCNQ K+ channels (M-current) and both L- and N-type Ca2+ channels (L- and N-current) by a pertussis toxin-insensitive, slow signaling pathway. Depletion of phosphatidylinositol-4,5-bisphosphate (PIP2) during M(1)R stimulation suffices to inhibit M-current. We found previously that following PIP2 hydrolysis by phospholipase C, activation of phospholipase A2 and liberation of a lipid metabolite, most likely arachidonic acid (AA) are necessary for L- and N-current modulation. Here we examined the involvement of a third lipase, diacylglycerol lipase (DAGL), in the slow pathway. We documented the presence of DAGL in superior cervical ganglion neurons, and then tested the highly selective DAGL inhibitor, RHC-80267, for its capacity to antagonize M(1)R-mediated modulation of whole-cell Ca2+ currents. RHC-80267 significantly reduced L- and N-current inhibition by the muscarinic agonist oxotremorine-M (Oxo-M) but did not affect their inhibition by exogenous AA. Moreover, voltage-dependent inhibition of N-current by Oxo-M remained in the presence of RHC-80267, indicating selective action on the slow pathway. RHC also blocked inhibition of recombinant N-current. In contrast, RHC-80267 had no effect on native M-current inhibition. These data are consistent with a role for DAGL in mediating L- and N-current inhibition. These results extend our previous findings that the signaling pathway mediating L- and N-current inhibition diverges from the pathway initiating M-current inhibition.  相似文献   

7.
The effects of three divalent metal cations (Mn2+, Co2+, and Cu2+) on high-voltage-activated (HVA) Ca2+ currents were studied in acutely dissociated pyramidal neurons of rat piriform cortex using the patch-clamp technique. Cu2+, Mn2+, and Co2+ blocked HVA currents conducted by Ba2+ ( IBa) with IC50 of approximately 920 nM, approximately 58 micro M, and approximately 65 micro M, respectively. Additionally, after application of non-saturating concentrations of the three cations, residual currents activated with substantially slower kinetics than control IBa. As a consequence, the current fraction abolished by the blocking cations typically displayed, in its early phase, an unusually fast-decaying transient. The latter phenomenon turned out to be a subtraction artifact, since none of the pharmacological components (L-, N-, P/Q-, and R-type) that constitute the total HVA currents under study showed a similarly fast early decay: hence, the slow activation kinetics of residual currents was not due to the preferential inhibition of a fast-activating/inactivating component, but rather to a true slowing effect of the blocker cations. The percent IBa-amplitude inhibition caused by Mn2+, Co2+, and Cu2+ was voltage-independent over the whole potential range explored (up to +30 mV), hence the slowing of IBa activation kinetics was not due to a mechanism of voltage- and time-dependent relief from block. Moreover, Mn2+, Co2+, and Cu2+ significantly reduced I(Ba) deactivation speed upon repolarization, which also is not compatible with a depolarization-dependent unblocking mechanism. The above results show that 1) Cu2+ is a particularly potent HVA Ca2+-channel blocker in rat palaeocortical neurons; and 2) Mn2+, Co2+, and Cu2+, besides exerting a blocking action on HVA Ca2+-channels, also modify Ca2+-current activation and deactivation kinetics, most probably by directly interfering with channel-state transitions.  相似文献   

8.
Spermine (Spe) is a polyamine co-secreted with neurotransmitters. In this work its effects on N-type Ca2+ channel (CaV2.2) have been studied on adult sensory neurons of the rat by means of whole-cell patch-clamp. Spe exerted biphasic effects when added to the external solution: at 500 μM decreased N-type Ca2+ channel currents, reducing the maximum whole-cell conductance, shifting the activation curve to the right on the voltage axes and decreasing its slope; conversely, at lower concentration (500 nM) Spe induced completely opposite effects. In 62% of the neurons the inhibitory effects were accompanied by a slowing down of the activation kinetics relieved by a conditioning pre-pulse to + 50 mV. The biphasic effects and their rapid onset and offset time course may be explained if multiple sites of action with a different affinity for Spe are present directly on the channel. The effects of Spe on HVA Ca2+ currents were strongly dependent on [Ca2+]ext, high [Ca2+] powerfully reducing Spe effects. This may be explained if we take into account that as Spe has four positive charges at physiological pH; it may compete with divalent cations for some negatively charged regulatory sites. In these experiments, Spe was effective at concentrations possibly reached in physiological conditions.  相似文献   

9.
α-Conotoxins Vc1.1 and RgIA are small peptides isolated from the venom of marine cone snails. They have effective anti-nociceptive actions in rat models of neuropathic pain. Pharmacological studies in rodent dorsal root ganglion (DRG) show their analgesic effect is mediated by inhibition of N-type (Ca(v)2.2) calcium channels via a pathway involving γ-aminobutyric acid type B (GABA(B)) receptor. However, there is no direct demonstration that functional GABA(B) receptors are needed for inhibition of the Ca(v)2.2 channel by analgesic α-conotoxins. This study examined the effect of the GABA(B) agonist baclofen and α-conotoxins Vc1.1 and RgIA on calcium channel currents after transient knockdown of the GABA(B) receptor using RNA interference. Isolated rat DRG neurons were transfected with small interfering RNAs (siRNA) targeting GABA(B) subunits R1 and R2. Efficient knockdown of GABA(B) receptor expression at mRNA and protein levels was confirmed by quantitative real time PCR (qRT-PCR) and immunocytochemical analysis, respectively. Whole-cell patch clamp recordings conducted 2-4 days after transfection showed that inhibition of N-type calcium channels in response to baclofen, Vc1.1 and RgIA was significantly reduced in GABA(B) receptor knockdown DRG neurons. In contrast, neurons transfected with a scrambled nontargeting siRNA were indistinguishable from untransfected neurons. In the HEK 293 cell heterologous expression system, Vc1.1 and RgIA inhibition of Ca(v)2.2 channels needed functional expression of both human GABA(B) receptor subunits. Together, these results confirm that GABA(B) receptors must be activated for the modulation of N-type (Ca(v)2.2) calcium channels by analgesic α-conotoxins Vc1.1 and RgIA.  相似文献   

10.
11.
本研究的目的在于探讨产前应激对子代大鼠海马CA3神经元高电压激活(HVA)钙通道、延迟整流钾电流(delayedrectifierpotassiumcurrents,IKD)的影响。产前应激(prenatalstress,PNS)组孕鼠孕晚期给予束缚应激,应用全细胞膜片钳技术进行研究。结果显示产前应激增加了子代海马CA3神经元HVA钙通道峰电流幅值,对照组和产前应激组子代CA3神经元平均最大HVA钙电流峰值分别为-576.52±7.03pA和-702.05±6.82pA(P<0.01)。同时未改变其电导-电压关系,也未改变延迟整流钾通道电流-电压关系、电导-电压关系。结果提示,在胎儿发育的关键时期,给予母体产前应激,引起子代海马神经元HVA钙电流增加,其机制一方面PNS导致皮质酮升高,从而可能增加HVA钙通道mRNA表达;另一方面PNS所致反应性氧化产物(reactiveoxygenspecies,ROS)增多,后者可能通过磷酸化HVACa2 通道亚单位,从而提高HVA钙电流幅值。  相似文献   

12.
Oxaliplatin is important for treating colorectal cancer. Although oxaliplatin is highly effective, it has severe side effects, of which neurotoxicity in dorsal root ganglion (DRG) neurons is one of the most common. The key mechanisms of this neurotoxicity are still controversial. However, disturbances of calcium homeostasis in DRG neurons have been suggested to mediate oxaliplatin neurotoxicity. By using whole-cell patch-clamp and current-clamp techniques, as well as immunocytochemical staining, we examined the influence of short- and long-term exposure to oxaliplatin on voltage-gated calcium channels (VGCC) and different VGCC subtypes in small DRG neurons of rats in vitro. Exposure to oxaliplatin reduced VGCC currents (ICa(V)) in a concentration-dependent manner (1–500 μM; 13.8–63.3%). Subtype-specific measurements of VGCCs showed differential effects on ICa(V). While acute treatment with oxaliplatin led to a reduction in ICa(V) for P/Q-, T-, and L-type VGCCs, ICa(V) of N-type VGCCs was not affected. Exposure of DRG neurons to oxaliplatin (10 or 100 μM) for 24 h in vitro significantly increased the ICa(V) current density, with a significant influence on L- and T-type VGCCs. Immunostaining revealed an increase of L- and T-type VGCC protein levels in DRG neurons 24 h after oxaliplatin exposure. This effect was mediated by calcium-calmodulin-protein kinase II (CaMKII). Significant alterations in action potentials (AP) and their characteristics were also observed. While the amplitude increased after oxaliplatin treatment, the rise time and time-to-peak decreased, and these effects were reversed by treatment with pimozide and nimodipine, which suggests that VGCCs are critically involved in oxaliplatin-mediated neurotoxicity.  相似文献   

13.
P G Haydon  H Man-Son-Hing 《Neuron》1988,1(10):919-927
In this study we have characterized two types of Ca2+ currents in identified neuron B5 of Helisoma and have examined the relationship between these currents and neurotransmitter release. Neuron B5 contains low-voltage-activated (LVA) and high-voltage-activated (HVA) Ca2+ currents. These currents have distinct electrophysiological and pharmacological properties. To gain access to the site of neurotransmitter release, we used a model system in which somata that do not extend neurites assume the role of neurotransmitter release. Before somata gain the ability to release neurotransmitter, they contain LVA and HVA Ca2+ currents. After 3 days of culture, when spherical somata have gained the secretory capacity, only the HVA Ca2+ current is present. Experiments were also performed when neurite extension was permitted. These data indicate that neurons with processes have a differential distribution of Ca2+ currents. The soma, which does not release neurotransmitter, contains both LVA and HVA Ca2+ currents, while distal secretory processes contain only HVA current.  相似文献   

14.
The action of several ligands on the low- (LVA,T) and high-threshold (HVA,L and N) Ca channels of adult rat sensory neurons and human neuroblastoma IMR32 cells has been investigated. In both cell types, 40 microM Cd2+ and 6.4 microM /omega-Conotoxin (omega-CgTx) selectively blocked the HVA channels, sparing the majority of LVA channels that were antagonized by amiloride and Ni2+. In 50% of the cells, however, /omega-CgTx spared also a 15% of HVA channels that proved to be sensitive to BAY K 8644. The agonistic action of BAY K 8644 on [omega-CgTx-resistant HVA channels caused a large Ba current increase, prolonged current deactivation and acceleration of HVA channels inactivation that was particularly evident in adult rat DRG.  相似文献   

15.
Physical exercise produces a variety of psychophysical effects, including altered pain perception. Elevated levels of centrally produced endorphins or endocannabinoids are implicated as mediators of exercise-induced analgesia. The effect of exercise on the development and persistence of disease-associated acute/chronic pain remains unclear. In this study, we quantified the physiological consequence of forced-exercise on the development of diabetes-associated neuropathic pain. Euglycemic control or streptozotocin (STZ)-induced diabetic adult male rats were subdivided into sedentary or forced-exercised (2-10 weeks, treadmill) subgroups and assessed for changes in tactile responsiveness. Two weeks following STZ-treatment, sedentary rats developed a marked and sustained hypersensitivity to von Frey tactile stimulation. By comparison, STZ-treated diabetic rats undergoing forced-exercise exhibited a 4-week delay in the onset of tactile hypersensitivity that was independent of glucose control. Exercise-facilitated analgesia in diabetic rats was reversed, in a dose-dependent manner, by naloxone. Small-diameter (< 30 μm) DRG neurons harvested from STZ-treated tactile hypersensitive diabetic rats exhibited an enhanced (2.5-fold) rightward (depolarizing) shift in peak high-voltage activated (HVA) Ca(2+) current density with a concomitant appearance of a low-voltage activated (LVA) Ca(2+) current component. LVA Ca(2+) currents present in DRG neurons from hypersensitive diabetic rats exhibited a marked depolarizing shift in steady-state inactivation. Forced-exercise attenuated diabetes-associated changes in HVA Ca(2+) current density while preventing the depolarizing shift in steady-state inactivation of LVA Ca(2+) currents. Forced-exercise markedly delays the onset of diabetes-associated neuropathic pain, in part, by attenuating associated changes in HVA and LVA Ca(2+) channel function within small-diameter DRG neurons possibly by altering opioidergic tone.  相似文献   

16.
In adult rat sensory neurons Ca2+ currents were studied with the whole-cell patch-clamp technique. Two categories of neuromodulators, known to activate different 2nd messenger systems: 1) angiotensin II (AII), bovine serum albumin (BSA), Acetylcholine (ACh) and 2) GABA, stimulated the low-voltage activated (LVA) and inhibited the high voltage activated (HVA) currents, respectively. The simultaneous application of the two types of drugs failed to inhibit the HVA current via a putative cross-talk between the two 2nd messengers.  相似文献   

17.
The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigated the effects of PAR-2 activation on N-type Ca2+ currents (ICa-N) in isolated neurons of the celiac ganglion (CG), which is involved in the sympathetic regulation of mesenteric artery vascular tone. PAR-2 agonists irreversibly diminished voltage-gated Ca2+ currents (ICa), measured using the patch-clamp method, in rat CG neurons, whereas thrombin had little effect on ICa. This PAR-2-induced inhibition was almost completely prevented by ω-CgTx, a potent N-type Ca2+ channel blocker, suggesting the involvement of N-type Ca2+ channels in PAR-2-induced inhibition. In addition, PAR-2 agonists inhibited ICa–N in a voltage-independent manner in rat CG neurons. Moreover, PAR-2 agonists reduced action potential (AP) firing frequency as measured using the current-clamp method in rat CG neurons. This inhibition of AP firing induced by PAR-2 agonists was almost completely prevented by ω-CgTx, indicating that PAR-2 activation may regulate the membrane excitability of peripheral sympathetic neurons through modulation of N-type Ca2+ channels. In conclusion, the present findings demonstrate that the activation of PAR-2 suppresses peripheral sympathetic outflow by modulating N-type Ca2+ channel activity, which appears to be involved in PAR-2-induced hypotension, in peripheral sympathetic nerve terminals.  相似文献   

18.
Estrogens initiate their action by binding to specific intracellular receptors and then acting on gene expression. In addition, there is growing evidence of a direct membrane effect via interaction with a cell surphase receptor. The aim of the present study was to investigate the acute effects of 17beta-estradiol on Ca2+ fluxes through second messenger pathways in rat cardiac muscle. Exposure of rat ventricle to low levels of 17beta-estradiol (10(-12)-10(-8) M) increased 45Ca2+ influx within 1 min (+38%); the response was biphasic, peaking at 2 and 5 min (+60 and +55%, respectively). The effect of the hormone on rat heart seems to be specific since 17alpha-estradiol, dihydrotestosterone, and progesterone were devoid of activity. The effect of 17beta-estradiol (5 min, 10(-10) M) was suppressed by nitrendipine (1 microM) and LaCl3 (10 microM), involving the activation of voltage-dependent Ca2+ channels in the acute increase of rat heart calcium influx by the hormone. 17Beta-estradiol rapidly increased cAMP content and PKA activity of rat cardiac muscle in parallel to the changes in Ca2+ uptake. In addition the cAMP antagonist Rp-cAMPS suppressed 17beta-estradiol-dependent Ca2+ influx. Altogether, the data suggest the involvement of the cAMP/PKA messenger system in the nongenomic modulation of Ca2+ influx in rat cardiac muscle by physiological levels of 17beta-estradiol.  相似文献   

19.
In this report, we demonstrate that NADPH oxidase is activated by tumor necrosis factor-alpha (TNF-alpha) plus interferon-gamma (IFN-gamma) in human monocytic cells (THP-1 cells) differentiated with phorbol ester (PMA) and that physiological concentration of 17beta-estradiol inhibits NADPH oxidase activity in THP-1 cells stimulated with TNF-alpha plus IFN-gamma. This effect is mediated by estrogen receptor based on estrogen receptor antagonist (ICI 182, 780) that diminishes inhibition by 17beta-estradiol. This inhibition is specific in 17beta-estradiol because 17alpha-estradiol, testosterone and progesterone do not inhibit NADPH oxidase activity. Activation of NADPH oxidase induced by TNF-alpha plus IFN-gamma is caused by up-regulation of p47(phox) (cytosolic component of NADPH oxidase) expression. 17beta-Estradiol prevents the up-regulation of p47(phox) mRNA and protein expression. This prevention of p47(phox) expression depends on the inhibition of NF-kappaB activation. Our results implicate that 17beta-estradiol has an anti-atherosclerotic effects through the improvement of nitric oxide (NO) bioavailability caused by the regulation of superoxide (O(2)(-)) production.  相似文献   

20.
Voltage-gated potassium channels are regulators of membrane potentials, action potential shape, firing adaptation, and neuronal excitability in excitable tissues including in the primary sensory neurons of dorsal root ganglion (DRG). In this study, using the whole-cell patch-clamp technique, the effect of estradiol (E2) on voltage-gated total outward potassium currents, the component currents transient “A-type” current (I A) currents, and “delayed rectifier type” (I KDR) currents in isolated mouse DRG neurons was examined. We found that the extracellularly applied 17β-E2 inhibited voltage-gated total outward potassium currents; the effects were rapid, reversible, and concentration-dependent. Moreover, the membrane impermeable E2-BSA was as efficacious as 17β-E2, whereas 17α-E2 had no effect. 17β-E2-stimulated decrease in the potassium current was unaffected by treatment with ICI 182780 (classic estrogen receptor antagonist), actinomycin D (RNA synthesis inhibitor), or cycloheximide (protein synthesis inhibitor). We also found that I A and I KDR were decreased after 17β-E2 application. 17β-E2 significantly shifted the activation curve for I A and I KDR channels in the hyperpolarizing direction. In conclusion, our results demonstrate that E2 inhibited voltage-gated K+ channels in mouse DRG neurons through a membrane ER-activated non-genomic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号