首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
After deriving some auxiliary equations for the average elongation of a viscous body under the action of forces derived from a potential, the diffusion problem for an ellipsoidal cell with a constant rate of reaction is solved for the case of an infinite permeability. The equation of elongation of such a cell under the influence of diffusion forces is derived, and compared with the, approximate expression obtained by N. Rashevsky for any kind of oblong cell. The two equations are in fair agreement. Effects of constant and variable surface tension are studied.  相似文献   

3.
Small angle neutron scattering (SANS) was performed on suspensions of actively metabolising human erythrocytes in the constant shear field induced by a Couette cell. The SANS pattern recorded on a two-dimensional detector was a function of the shear rate; at zero shear, the SANS pattern had radial symmetry around the direction of the beam. The radial average of the SANS pattern consisted of a broad intensity maximum superimposed on a decay. The intensity maximum at q = 0.1 Å-1 was attributed to isotropically oriented self-associated complexes of the tetrameric oxygen transport protein hemoglobin inside the erythrocytes. A flow curve of the cell suspension was used to identify at what shear rate a suspension of uniaxially oriented ellipsoidal cells is produced. The radial symmetry of the SANS patterns persisted until the shear rate was sufficient to produce a suspension of uniaxially oriented ellipsoidal cells. Again, an intensity maximum was present in directions parallel and orthogonal to the shear axis, but this intensity maximum was superimposed upon quite different intensity decays in each direction from that of the primary neutron beam. The angular range of the SANS instrument was limited, however the results from shear-induced structural changes is consistent with a model that involves hemoglobin complexes that are aligned with respect to the plasma membranes of the elongated cells.  相似文献   

4.
It was stated elsewhere ( Glebov , Abramyan , 1983) that the appearance of a number of phenotypic variants detected in somatic cell populations with high frequency should be provided by genetical unstable alterations. The properties of somatic cell variants that reproduce unstably a changable phenotype in the course of cell generations are analysed. These variants: (1) appear accidentally and independently on selectivity agent; (2) as a rule, the frequency of the variant arising does not increase under the action of mutagens; (3) the phenotypic reversion of unstable variants is a stochastic process; (4) such variants are characterized by intraclonal heterogeneity and by the segregation of stable alternative variants. The number of properties of phenotypically unstable variants isolated by one-step selection is similar to those for somatic cell variants isolated in the course of multistep selection. The latter are characterized by phenotypic reversion too. The appearance of unstable phenotypic variants is concluded to be associated with the genetical unstable alterations. It is argued that at least part of above alterations should be induced by the insertion of mobile genetic elements. The features of karyotypical variation in somatic cell population allow to conclude that the karyotype of cultured somatic cells is a genetically unstable attribute. The features mentioned above are: a high frequency of karyotypical alterations which is inherited by the cells with difference in the frequency of arising of karyotypical alteratons . The unstability of karyotype is restricted to the genetic unstability that is seen from non-random karyotypic variation, and interclonal difference in the chromosome stability. The site-specificity of karyotype alterations that proceed with high frequency allow to put forward a hypothesis that the process of mobile genetic element transposition is induced on the early stages of the history of constant cultured cell lines.  相似文献   

5.
6.
Effect of cell shape on dielectric behavior of fission yeast   总被引:2,自引:0,他引:2  
In order to study the effect of cell shape on dielectric behavior of cell suspensions, a temperature sensitive cell division cycle mutant cdc25-22, of Schizosaccharomyces pombe was used, whose cell length was varied by cultivating at the restrictive temperature. The dielectric dispersion of the cells in suspension was mainly composed of two subdispersions. The low-frequency subdispersion depended on the cell length, whereas the high-frequency subdispersion was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model.  相似文献   

7.
8.
R J Tallarida 《Life sciences》1990,46(22):1559-1568
The law of mass action is almost universally applied to interactions of both endogenous ligands and drugs with their specific receptors and results in the familiar hyperbolic equilibrium binding curve of bound (y) vs free (z) concentrations. Whereas the concentration of a drug molecule is governed by its pharmacokinetic properties and, possibly, by intrinsic control mechanisms, natural ligands are certainly controlled since their concentrations normally remain within specific limits. This paper represents a further study of control of this kinetic process in a model based on ligand production (rate F), first-order elimination (rate constant E) and a feedback function of occupancy, phi(y), that modulates these. In the controlled situation the system equilibrium occurs at states called critical points (yc,zc) at which both dy/dt and dz/dt are simultaneously zero. There are only a finite number of such points along the hyperbolic binding curve and these may be either stable or unstable. The basal state is the normal operating point of the system and is necessarily stable; that is, perturbations producing states away from it will return in time to this point. We have previously shown that phi'(y) less than or equal to 0 is a sufficient condition for stability. Accordingly, for a continuous control curve, an adjacent critical point will be unstable, and have phi'(y) greater than 0. If the system coordinates get sufficiently close to such an unstable point there is propulsion to extreme states and loss of control. The distance between the stable and unstable points determines whether a dose (or release) of the ligand will be controlled or not. The current paper focuses on the geometrical properties of the binding and control curves and how these relate to the stability of critical points and the overall control of ligand doses. In particular we show how the magnitude of the (negative) slope of the control curve at the basal point affects the frequency of oscillation about the basal state. It is further shown that high frequency control results in lower receptor occupancy, a result that may explain desensitization.  相似文献   

9.
Cifra M 《Bio Systems》2012,109(3):356-366
Eigenmodes of the spherical and ellipsoidal dielectric electromagnetic resonator have been analysed. The sizes and shape of the resonators have been chosen to represent the shape of the interphase and dividing animal cell. Electromagnetic modes that have shape exactly suitable for positioning of the sufficiently large organelles in cell (centrosome, nucleus) have been identified. We analysed direction and magnitude of dielectrophoretic force exerted on large organelles by electric field of the modes. We found that the TM(1m1) mode in spherical resonator acts by centripetal force which drags the large organelles which have higher permittivity than the cytosol to the center of the cell. TM-kind of mode in the ellipsoidal resonator acts by force on large polarizable organelles in a direction that corresponds to the movement of the centrosomes (also nucleus) observed during the cell division, i.e. to the foci of the ellipsoidal cell. Minimal required force (10(-16)N), gradient of squared electric field and corresponding energy (10(-16)J) of the mode have been calculated to have biological significance within the periods on the order of time required for cell division. Minimal required energy of the mode, in order to have biological significance, can be lower in the case of resonance of organelle with the field of the cellular resonator mode. In case of sufficient energy in the biologically relevant mode, electromagnetic field of the mode will act as a positioning or steering mechanism for centrosome and nucleus in the cell, thus contribute to the spatial and dynamical self-organization in biological systems.  相似文献   

10.
A preliminary study of blebbing in tissue cultures has been made. The tubal epithelium of fetal mouse oviduct was cultured at 37°C in Rose chambers. A cinematographic record was obtained of phase microscope observations of mitotic cells. Measurements of the size of both cells and blebs were made on the film using a “traveling” microscope. The duration and the rise and decay times of blebs were determined simply by counting frames on the film. Detailed observations are reported on blebbing in four cells undergoing mitosis. The results indicate that the frequency of blebbing as well as the duration of individual blebs exhibits a maximum during telophase. A model is proposed to account for blebbing in mitotic cells. The model attributes to local regions of the cell membrane the property of constant tension independent of stretch over some restricted range of stretch. This property implies that the cell membrane is locally unstable. Further assumptions stated explicitly in the model are that (i) cell division occurs at constant volume, (ii) the cell membrane stretches during cleavage, (iii) there is a positive pressure drop across the cell membrane. Evidence is cited in support of these assumptions as well as independent evidence that the cell membrane may be locally unstable. A physical model is described which would be expected to exhibit blebbing given the above assumptions.  相似文献   

11.
Using fluorescent repressor-operator systems in live cells, we investigated the dynamic behaviour of chromosomal origins in Vibrio cholerae, whose genome is divided between two chromosomes. We have developed a method of analysing fine-scale motion in the curved co-ordinate system of vibrioid bacteria. Using this method, we characterized two different modes of chromosome behaviour corresponding to periods between segregation events and periods of segregation. Between segregation events, the origin positions are not fixed but rather maintained within ellipsoidal caged domains, similar to eukaryotic interphase chromosome territories. These domains are approximately 0.4 microm wide and 0.6 microm long, reflecting greater restriction in the short axis of the cell. During segregation, movement is directionally biased, speed is comparable between origins, and cell growth can account for nearly 20% of the motion observed. Furthermore, the home domain of each origin is positioned by a different mechanism. Specifically, the oriC(I) domain is maintained at a constant actual distance from the pole regardless of cell length, while the oriC(II) domain is maintained at a constant relative position. Thus the actual position of oriC(II) varies with cell length. While the gross behaviours of the two origins are distinct, their fine-scale dynamics are remarkably similar, indicating that both experience similar microenvironments.  相似文献   

12.
Ascorbic acid (vitamin C) is a primary antioxidant for cells. But, ascorbic acid added to culture medium is not readily available to cells in culture, because it is unstable in aqueous media. We determined the conditions required to obtain and maintain a constant concentration of ascorbate in the culture medium using ascorbate and ascorbate-phosphate. The study was carried out with human fibroblasts and the amounts of ascorbate in the culture medium were determined by high performance liquid chromatography. A mixture of 0.25 mmol/L ascorbate and 0.45 mmol/L ascorbate-phosphate provided a constant concentration of ascorbate in the culture medium. This constant ascorbate concentration proved to be nontoxic for cells and stimulated cell growth in the short term and long term.  相似文献   

13.
One of the most important criteria for the successful manufacture of a therapeutic protein (e.g., an antibody) is to develop a mammalian cell line that maintains stability of production. Problems with process yield, lack of effective use of costly resources, and a possible delay in obtaining regulatory approval of the product may ensue otherwise. Therefore the stability of expression in a number of Chinese hamster ovary (CHO) derived production cell lines that were isolated using the glutamine synthetase (GS) selection system was investigated by defining a culture as unstable if the titer (which is a measure of productivity) of a cell line expressing an antibody or antibody-fusion protein declined by 20-30% or more as it underwent 55 population doublings. Using this criterion, a significant proportion of the GS-selected CHO production cell lines were observed to be unstable. Reduced antibody titers correlated with the gradual appearance of a secondary, less productive population of cells as detected with flow cytometric analysis of intracellular antibody content. Where tested, it was observed that the secondary population arose spontaneously from the parental population following multiple passages, which suggested inherent clonal instability. Moreover, the frequency of unstable clones decreased significantly if the host cell line from which the candidate production cell lines were derived was apoptotic-resistant. This data suggested that unstable cell lines were more prone to apoptosis, which was confirmed by the fact that unstable cell lines had higher levels of Annexin V and caspase 3 activities. This knowledge has been used to develop screening protocols that identify unstable CHO production cell lines at an early stage of the cell line development process, potentially reducing the cost of biotherapeutic development.  相似文献   

14.
Formation of a stable polarity axis underlies numerous biological processes. Here, using high-resolution imaging and complementary mathematical modeling we find that cell polarity can be established via the spatial coordination of opposing membrane trafficking activities: endocytosis and exocytosis. During polarity establishment in budding yeast, these antagonistic processes become apposed. Endocytic vesicles corral a central exocytic zone, tightening it to a vertex that establishes the polarity axis for the ensuing cell cycle. Concomitantly, the endocytic system reaches an equilibrium where internalization events occur at a constant frequency. Endocytic mutants that failed to initiate periodic internalization events within the corral displayed wide, unstable polarity axes. These results, predicted by in silico modeling and verified by high resolution in vivo studies, identify a requirement for endocytic corralling during robust polarity establishment.  相似文献   

15.
The kinetics of stable and unstable ribonucleic acid (RNA) synthesis during the division cycle of Myxococcus xanthus growing in a defined medium was determined. Under these conditions, M. xanthus contains one chromosome which is replicated during 80% of the cell cycle. Stable RNA synthesis was measured by pulselabeling an exponential-phase culture with radioactive uridine and then preparing the cells for quantitative autoradiography. By measuring the size of individual cells as well as the number of grains, the rate of stable RNA synthesis as a function of cell size was determined. Unstable RNA synthesis during the division cycle was determined by correlating the data for stable RNA synthesis with the relative amounts of stable and unstable RNA labeled during the short pulse. The data reported here demonstrate that: (i) cells synthesize both stable and unstable RNA throughout the division cycle; (ii) the rate of stable RNA synthesis increases in two discrete steps, corresponding to average ages of 0.15 and 0.75 generations; (iii) the rate of unstable RNA synthesis exhibits an initial rise, followed by a relatively constant rate of synthesis, and finally, a burst of unstable RNA synthesis prior to septum formation. The half-life of unstable RNA of M. xanthus, generation time of 390 min at 30 C, was 4 min. Comparison of the rates of stable and unstable RNA synthesis indicates noncoordinate RNA synthesis within the normal division cycle.  相似文献   

16.
Summary Particles with a nonconducting membrane, oriented in an alternating electrical field, will show the behaviour of electrical dipoles. Across the membranes there will be generated alternating electrical potential differences, which may be calculated for confocal ellipsoidal cells by solving Laplace's equation. We have evaluated a formula valid generally for single confocal ellipsoidal cells under physiological conditions, the cells being placed with one of their semi-axes parallel to an external electrical field. The values of the generated potential difference, considered at the position of their maximum values, are dependent on the shape and size of the cells, on their orientation to the electrical field and on the frequency and strength of the field. The relaxation frequency depends also on cell shape, size and orientation, but furthermore on the membrane properties and on the conductivities inside and outside the cells. For simple cases like spheres and cylinders perpendicular to the electrical field, our formula will correspond to known expressions. Values for the generated potential differences, form-factors and relaxation frequencies are given for different types of spheroids and at different orientations. Of some practical importance are long prolate spheroids with their long semi-axes parallel to the external field, because only small field strengths are necessary in order to generate large potential differences which may evoke action potentialse.g. in muscle or nerve cells. The significance of this mechanism concerning the determination of protection and safeguard standards for the exposure to low-frequency electrical fields is discussed.Dedicated to Prof. Dr. Dr. h. c. mult. B. Rajewsky on the occasion of his 80th birthday.  相似文献   

17.
Malignant cells exhibit two constant behavioural features which together determine lethality: cell proliferation and invasion. Since proliferation alone produces only benign tumours, invasion is the key to malignancy. All tissue cells are inherently motile, so it is argued that invasion will occur in vivo whenever cell movement is not under control. From embryological studies it is understood that movement is normally controlled by interacting sets of cell surface recognition molecules. Accordingly it is hypothesized that the prime phenotypic defect in malignancy is loss (or masking) of the malignant cells' recognition molecules. It is believed that malignant transformation occurs in stem cells at critical differentiation "switching" steps involving changes in surface phenotype. A cell recognition defect could arise therefore if cell surface marker deletion is not followed by full expression of a complete set of new markers. Investigation of such a possibility could test the hypothesis.  相似文献   

18.
An unstable activator model for the size-control of cellular events is presented. An effector is synthesised at a rate proportional to cell volume and degraded at a rate in proportion to its own concentration and the number of nuclei (or genome equivalents) so that at equilibrium its concentration changes two-fold over one cell cycle. Triggering of the controlled event occurs when a critical concentration is achieved. Provided turnover of the effector is rapid the cell will correctly monitor its nuclear concentration under all conditions.  相似文献   

19.
1. The technique of DNA-RNA hybridization was used to follow changes in the amount and average lifetime of unstable messenger RNA in Escherichia coli M.R.E. 600 over a wide range of different growth conditions. The method of analysis was based on the kinetics of incorporation of exogenous labelled nucleic acid bases into the RNA of steadily growing cultures, as described by Bolton & McCarthy (1962). 2. The ratio of the average lifetime of messenger RNA to the mean generation time of E. coli cultures was constant over the temperature range 25-45 degrees C in a given medium, but the constant varied with the nature of the growth medium. For cultures growing in sodium lactate-salts or glucose-salts media the ratio was 0.046+/-0.005 and in enriched broth it was 0.087+/-0.009. Measurements of the amounts of transfer RNA, ribosomal RNA and messenger RNA were also made. The results confirmed earlier reports that the ratio of the amount of messenger RNA to the amount of ribosomes in the cells is virtually constant. On the other hand, the ratio of the amount of transfer RNA to the amount of ribosomal RNA decreased with increasing growth rate at a given temperature. 3. In cultures at temperatures higher than necessary for optimum rates of growth the average lifetime of messenger RNA lengthened in harmony with the increased time required for cell division. It seems that suboptimum growth rates at higher temperatures cannot be explained simply as a combination of increased rates of synthesis and breakdown of messenger RNA with a grossly decreased efficiency of translation. The absolute rate of messenger RNA synthesis was lowered, and its amount in the cells was typical of all other cultures grown at lower temperatures in the same medium. 4. The rate of entry of exogenous labelled uracil into unstable messenger RNA and stable ribosomal RNA was constant in all media at all temperatures in the approximate ratio 1:2. In media supporting a lower rate of growth, e.g. lactate-salts or glucose-salts media, the messenger RNA fraction constituted 2.2+/-0.3% of the total cellular RNA. In enriched broth 3.6+/-0.3% of the total RNA was messenger.  相似文献   

20.
Lynn L. Hoefert 《Protoplasma》1969,68(1-2):237-240
Summary The structure of sperm cells in mature trinucleate pollen grains ofBeta vulgaris L. was studied with the electron microscope. The ellipsoidal sperm cell nuclei and cytoplasm are products of mitosis and cytokinesis of the ellipsoidal generative cell. Each sperm cell is separated from the vegetative cytoplasm by two contiguous membranes which enclose its cytoplasm and nucleus. Microtubules present in the sperm cell cytoplasm may be responsible for sperm cell motility.Approved as Journal paper Nr. 846, Utah Agricultural Experiment Station, Logan, Utah.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号