首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown here that Escherichia coli beta-galactosidase has a second Mg2+ binding site that is important for activity. Binding of Mg2+ to the second site caused the k(cat) (with oNPG as the substrate) to increase about 100 s(-1); the Km was not affected. The Kd for binding the second Mg2+ is about 10(-4)M. Since the concentration of free Mg2+ in E. coli is about 1-2 mM, the second site is physiologically significant. Non-polar substitutions (Ala or Leu) for Glu-797, a residue in an active site loop, eliminated the k(cat) increase. This indicates that the second Mg2+ site is near to Glu-797. The Ki values of transition state analogs were decreased by small but statistically significant amounts when the second Mg2+ site was occupied and Arrhenius plots showed that less entropic activation energy is required when the second site is occupied. These inhibitor and temperature results suggest that binding of the second Mg2+ helps to order the active site for stabilization of the transition state.  相似文献   

2.
An extracellular beta-galactosidase from a thermophilic fungus Rhizomucor sp. has been purified to homogeneity by successive DEAE cellulose chromatography followed by gel filtration on Sephacryl S-300. The native molecular mass of the enzyme is 250,000 and it is composed of two identical subunits with molecular mass of 120,000. It is an acidic protein with a pI of 4.2. Purified beta-galactosidase is a glycoprotein and contains 8% neutral sugar. The optimum pH and temperature for enzyme activity are 4.5 and 60 degrees C, respectively. The enzyme is stable at 60 degrees C for 4 h, and has a t(1/2) of 150 min(-1) at 70 degrees C which is one of the highest reported for fungal beta-galactosidases. Substrate specificity studies indicated that the enzyme is specific for beta-linked galactose residues with a preference for p-nitrophenyl-beta-D-galactopyranoside (pNPG). The Km and Vmax values for the synthetic substrates pNPG and o-nitrophenyl-beta-D-galactopyranoside (oNPG) were 0.66 mM and 1.32 mM; and 22.4 mmol min(-1) mg(-1) and 4.45 mmol min(-1) mg(-1), respectively, while that for the natural substrate, lactose, was 50.0 mM and 12 mmol min(-1) mg(-1). The end product galactose and the substrate analogue isopropyl thiogalactopyranoside (ITPG) inhibited the enzyme with Ki of 2.6 mM and 12.0 mM, respectively. The energy of activation for the enzyme using pNPG and oNPG were 27.04 kCal and 9.04 kCal, respectively. The active site characterization studies using group-specific reagents revealed that a tryptophan and lysine residue play an important role in the catalytic activity of the enzyme.  相似文献   

3.
The Met-542 residue of β-galactosidase is important for the enzyme's activity because it acts as a guide for the movement of the benzyl side chain of Phe-601 between two stable positions. This movement occurs in concert with an important conformational change (open vs. closed) of an active site loop (residues 794-803). Phe-601 and Arg-599, which interact with each other via the π electrons of Phe-601 and the guanidium cation of Arg-599, move out of their normal positions and become disordered when Met-542 is replaced by an Ala residue because of the loss of the guide. Since the backbone carbonyl of Phe-601 is a ligand for Na(+), the Na(+) also moves out of its normal position and becomes disordered; the Na(+) binds about 120 times more poorly. In turn, two other Na(+) ligands, Asn-604 and Asp-201, become disordered. A substrate analog (IPTG) restored Arg-599, Phe-601, and Na(+) to their normal open-loop positions, whereas a transition state analog d-galactonolactone) restored them to their normal closed-loop positions. These compounds also restored order to Phe-601, Asn-604, Asp-201, and Na(+). Binding energy was, however, necessary to restore structure and order. The K(s) values of oNPG and pNPG and the competitive K(i) values of substrate analogs were 90-250 times higher than with native enzyme, whereas the competitive K(i) values of transition state analogs were ~3.5-10 times higher. Because of this, the E?S energy level is raised more than the E?transition state energy level and less activation energy is needed for galactosylation. The galactosylation rates (k?) of M542A-β-galactosidase therefore increase. However, the rate of degalactosylation (k?) decreased because the E?transition state complex is less stable.  相似文献   

4.
Specific inhibition of 2H+/proline symport by syn-coupled ions (Na+, Li+, and H+) was investigated using cytoplasmic membrane vesicles prepared from the proline carrier-overproducing strain MinS/ pLC4 -45 of Escherichia coli K12. The 2H+/proline symport driven by the membrane potential generated via respiration with 20 mM ascorbate/Tris, 0.1 mM phenazine methosulfate was specifically inhibited by Na+. The inhibition by Na+ was described by a fully noncompetitive mechanism, and the apparent Ki for Na+ was 15 mM. A linear correlation between the apparent Vmax and the apparent Kd was observed. Li+ stimulated the transport activity 2-fold at 10 mM and inhibited it at concentrations above 50 mM. H+ caused fully noncompetitive inhibition of 2H+/proline symport, and its apparent Ki was 0.6 microM. These results indicate that the concentrations of Na+ and H+ strictly and independently regulate the amount of the active C state carrier responsible for 2H+/proline symport driven by the membrane potential by inhibiting the transition from the C* state carrier which exhibits Na+- and H+-dependent binding of proline and is predominant in nonenergized conditions.  相似文献   

5.
AIMS: Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima for the hydrolysis of lactose and the production of galacto-oligosaccharides. METHODS AND RESULTS: A putative beta-galactosidase gene of Thermotoga maritima was expressed in Escherichia coli as a carboxyl terminal His-tagged recombinant enzyme. The gene encoded a 1100-amino acid protein with a calculated molecular weight of 129,501. The expressed enzyme was purified by heat treatment, His-tag affinity chromatography, and gel filtration. The optimum temperatures for beta-galactosidase activity were 85 and 80 degrees C with oNPG and lactose, respectively. The optimum pH value was 6.5 for both oNPG and lactose. In thermostability experiments, the enzyme followed first-order kinetics of thermal inactivation and its half-life times at 80 and 90 degrees C were 16 h and 16 min, respectively. Mn2+ was the most effective divalent cation for beta-galactosidase activity on both oNPG and lactose. The Km and Vmax values of the thermostable enzyme for oNPG at 80 degrees C were 0.33 mm and 79.6 micromol oNP min(-1) mg(-1). For lactose, the Km and Vmax values were dependent on substrate concentrations; 1.6 and 63.3 at lower concentrations up to 10 mm of lactose and 27.8 mm and 139 micromol glucose min(-1) mg(-1) at higher concentrations, respectively. The enzyme displayed non-Michaelis-Menten reaction kinetics with substrate activation, which was explained by simultaneous reactions of hydrolysis and transgalactosylation. CONCLUSIONS: The results suggest that the thermostable enzyme may be suitable for both the hydrolysis of lactose and the production of galacto-oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of hydrolysis and transgalactosylation performed by beta-galactosidase of hyperthermophilic bacteria.  相似文献   

6.
The (Na+ + K+)-activated ATPase catalyzes the K+-activated hydrolysis of 3-O-methylfluorescein phosphate (3OMFP) with a Km of 50 microM, nearly two orders of magnitude lower than the Km for nitrophenyl phosphate, 3 mM. Both ATP and nitrophenyl phosphate are competitors toward 3OMFP with Ki values corresponding to their Km values (for ATP that at the low-affinity sites of the E2 conformation). Enzyme treated with fluorescein isothiocyanate (FITC) such that 60% of the (Na+ + K+)-ATPase activity is lost still hydrolyzes both 3OMFP and nitrophenyl phosphate: the apparent Km values are increased less than 2-fold and the Vmax is unaffected. ATP still inhibits these K+-phosphatase reactions of the FITC-treated enzyme, and this inhibition can exceed the 40% of residual (Na+ + K+)-ATPase activity. Evaluation of a kinetic model indicates that the Ki for ATP is increased about an order of magnitude by FITC-binding. Similar results obtain with trinitrophenyl-ATP (TNP-ATP) as inhibitor, in this case with Ki values in the micromolar range. Finally, FITC treatment increases K+-activated ADPase activity. These observations are interpreted as the fluorescein ring of 3OMFP binding to the adenine pocket of the substrate site, thereby conferring high affinity, just as the fluorescein ring of FITC binding to the adenine pocket in the E1 conformation permits specific linkage of the isothiocyanate chain to a particular lysine, Lys-501. Then, coincident with the transition to the E2 conformation, which bears the low-affinity site for ATP and which catalyzes the K+-phosphatase reaction, the FITC molecule tethered to Lys-501 is pulled from the adenine pocket: allowing 3OMFP and ADP to bind as substrates and ATP and TNP-ATP as inhibitors, albeit in altered conformation. The E1 to E2 transition thus involves not only a change from high to low affinity for ATP, but also a distortion of the adenine pocket and the orientation between Lys-501 and Asp-369, the residue associated with catalysis.  相似文献   

7.
Beta-galactosidase from the probiotic strain Lactobacillus acidophilus R22 was purified to apparent homogeneity by ammonium sulphate fractionation, hydrophobic interaction, and affinity chromatography. The enzyme is a heterodimer consisting of two subunits of 35 and 72 kDa, as determined by gel electrophoresis. The optimum temperature of beta-galactosidase activity was 55 degrees C (10-min assay) and the range of pH 6.5-8, respectively, for both o-nitrophenyl-beta-D-galactopyranoside (oNPG) and lactose hydrolysis. The Km and Vmax values for lactose and oNPG were 4.04+/-0.26 mM, 28.8+/-0.2 micromol D-glucose released per min per mg protein, and 0.73+/-0.07 mM, 361+/-12 micromol o-nitrophenol released per min per mg protein, respectively. The enzyme was inhibited by high concentrations of oNPG with Ki,s=31.7+/-3.5 mM. The enzyme showed no specific requirements for metal ions, with the exception of Mg2+, which enhanced both activity and stability. The genes encoding this heterodimeric enzyme, lacL and lacM, were cloned, and compared with other beta-galactosidases from lactobacilli. Beta-galactosidase from L. acidophilus was used for the synthesis of prebiotic galacto-oligosaccharides (GOS) from lactose, with the maximum GOS yield of 38.5% of total sugars at about 75% lactose conversion.  相似文献   

8.
Effects of various cations on the dephosphorylation of (Na+ + K+)-ATPase, phosphorylated by ATP in 50 mM imidazole buffer (pH 7.0) at 22 degrees C without added Na+, have been studied. The dephosphorylation in imidazole buffer without added K+ is extremely sensitive to K+-activation (Km K+ = 1 microM), less sensitive to Mg2+-activation (Km Mg2+ = 0.1 mM) and Na+-activation (Km Na+ = 63 mM). Imidazole and Na+ effectively inhibit K+-activated dephosphorylation in linear competitive fashion (Ki imidazole 7.5 mM, Ki Na+ 4.6 mM). The Ki for Na+ is independent of the imidazole concentration, indicating different and non-interacting inhibitory sites for Na+ and imidazole. Imidazole inhibits Mg2+-activated dephosphorylation just as effective as K+-activated dephosphorylation, as judged from the Ki values for imidazole in the two processes. Tris buffer and choline chloride, like imidazole, inhibit dephosphorylation in the presence of residual K+ (less than 1 microM), but less effectively in terms of I50 values and extent of inhibition. Tris inhibits to the same extent as choline. This indicates different inhibitory sites for Tris or choline and for imidazole. These findings indicate that high steady-state phosphorylation levels in Na+-free imidazole buffer are due to the induction of a phosphorylating enzyme conformation and to the inhibition of (K+ + Mg2+)-stimulated dephosphorylation.  相似文献   

9.
In membrane preparations, CFT, a phenyltropane cocaine analog, and dopamine (DA) interact with the recombinant human dopamine transporter (hDAT) in Na+ -free medium. Na+ markedly increased the transporter's affinity for CFT, but had little or no effect on DA potency for inhibiting CFT binding. Raising [Na+ ] from 20 to 155 mm reduced Li+ -induced increase in DA K (i), but not CFT K (d). The presence of 155 mm Na+ enhanced the tolerance to low pH of CFT Kd but not DA Ki. Leucine substitution for tryptophan 84 (W84L) in transmembrane domain (TM) 1 or asparagine substitution for aspartate 313 (D313N) in TM 6 did not or only modestly enhance the affinity of Na+ -independent CFT binding, and retained the near normal ability of DA, Li+, K+, or H+ to inhibit this binding. However, the mutations significantly enhanced the Na+ stimulation of CFT binding as well as the Na+ antagonism against Li+ and H+ inhibition of CFT binding. In contrast, the mutations neither changed the Na+ -insensitive feature of DA Ki nor enhanced the Na+ protection of DA Ki against Li+ 's inhibitory effect, though they caused Na+ protection of DA Ki against H+ 's inhibitory action. These results are consistent with the existence of binding conformations for DA that are distinguishable from those for CFT, and with a differential association of cation interactions with DA and CFT binding. The mutations likely alter Na+ -bound state(s) of hDAT, preferentially strengthening the positive allosteric coupling between Na+ and CFT binding, and reducing the impact of Li+ or H+ on the CFT binding.  相似文献   

10.
For bovine erythrocyte acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7), the Michaelis parameters Vmax., and Km for the natural substrate acetylcholine were estimated as a function of pH and sodium chloride concentration by the pH-stat method. A single dissociation constant for Na+ binding (K = 7 X 10(-3) M) suffices to explain the salt dependence of Vmax./Km and of Km as well as the pH dependence of Vmax./Km and Vmax., Km being pH independent. This finding provides evidence for a specific effect of Na+, presumably by binding at the anionic subsite of the active centre. Na+ binding causes a 50-fold decrease in kcat./Km as well as a decrease of one unit in the pKa of both kcat./Km and kcat.. The intrinsic pKa in the absence of salt at 25 degrees C is about 7.5. Comparison of the degree of fit of the data to the Debeye-Huckel equation, in accordance with an alternative general salt effect, as well as published data for sodium and potassium chlorides also favour a specific salt effect.  相似文献   

11.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

14.
The Kd for ouabain-sensitive K+ or Rb+ binding to Na+,K(+)-ATPase was determined by the centrifugation method with radioactive K+ and Rb+ in the presence of various combinations of Na+, ATP, adenylylimidodiphosphate (AMPPNP), adenylyl-(beta,gamma-methylene)diphosphonate (AMPPCP), Pi, and Mg2+. From the results of the K+ binding experiments, Kd for Na+ was estimated by using an equation describing the competitive inhibition between the K+ and Na+ binding. 1) The Kd for K+ binding was 1.9 microM when no ligand was present. Addition of 2 mM Mg2+ increased the Kd to 15-17 microM. In the presence of 2 mM Mg2+, addition of 3 mM AMPPCP with or without 3 mM Na+ increased the Kd to 1,000 or 26 microM, respectively. These Kds correspond to those for K+ of Na.E1.AMPPCPMg or E1.AMPPCPMg, respectively. 2) Addition of 4 mM ATP with or without 3 mM Na+ decreased the Kd from 15-17 microM to 5 or 0.8 microM, respectively. Because the phosphorylated intermediate was observed but ATPase activity was scarcely observed in the K+ binding medium containing 3 mM ATP and 2 mM Mg2+ in the absence of Na+ as well as in the presence of Na+ at 0 degrees C, it is suggested that K+ binds to E2-P.Mg under these ligand conditions. 3) The Kd for Na+ of the enzyme in the presence of 3 mM AMPPCP or 4 mM ATP with Mg2+ was estimated to be 80 or 570 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Munson KB  Lambrecht N  Sachs G 《Biochemistry》2000,39(11):2997-3004
The effects of site-directed mutagenesis were used to explore the role of residues in M4 on the apparent Ki of a selective, K+-competitive inhibitor of the gastric H+,K+ ATPase, SCH28080. A double transfection expression system is described, utilizing HEK293 cells and separate plasmids encoding the alpha and beta subunits of the H+,K+-ATPase. The wild-type enzyme gave specific activity (micromoles of Pi per hour per milligram of expressed H+,K+-ATPase protein), apparent Km for ammonium (a K+ surrogate), and apparent Ki for SCH28080 equal to the H+, K+-ATPase purified from hog gastric mucosa. Amino acids in the M4 transmembrane segment of the alpha subunit were selected from, and substituted with, the nonconserved residues in M4 of the Na+, K+-ATPase, which is insensitive to SCH28080. Most of the mutations produced competent enzyme with similar Km,app values for NH4+ and Ki,app for SCH28080. SCH28080 affinity was decreased 2-fold in M330V and 9-fold in both M334I and V337I without significant effect on Km,app. Hence methionine 334 and valine 337 participate in binding but are not part of the NH4+ site. Methionine 330 may be at the periphery of the inhibitor site, which must have minimum dimensions of approximately 16 x 8 x 5 A and be accessible from the lumen in the E2-P conformation. Multiple sequence alignments place the membrane surface near arginine 328, suggesting that the side chains of methionine 334 and valine 337, on one side of the M4 helix, project into a binding cavity within the membrane domain.  相似文献   

16.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

17.
We have investigated the characteristics of a transport system in HeLa cells, which turned out to be very similar to a previously described Na+, K+, 2Cl- -cotransport system. For further understanding about the physiological role of the cotransporter, we have mutagenized HeLa cells and selected progeny cells for growth in low potassium (0.2 mM) medium. The selected HeLa cells (LK1) exhibited alterations in the Na+,K+,2Cl- -cotransport system. LK1 cells showed a remarkable reduction of 86Rb+ efflux via the cotransporter when compared to the parental HeLa cells. In contrast, bumetanide-sensitive potassium influx, measured by 86Rb+ uptake, was increased in the LK1 cells (increase in Vmax). Km values of the cotransporter in HeLa cells and LK1 mutants revealed similar properties for 86Rb+ and 22Na+ uptake. In addition, (3H)-bumetanide binding studies were carried out on intact HeLa cells; 1.7 pmol/mg protein (3H)-bumetanide was specifically bound to HeLa parental cells, which could be calculated to a number of 103,000 binding sites/cell. LK1 cells present, 1.44 pmol/mg protein, specifically bound (3H)-bumetanide and, respectively, 137,000 binding sites/cell. The LK1 cells also exhibited an increase in the number of (3H)-ouabain binding sites as well as an increase in the activity of the Na+,K+-ATPase, expressed as a function of ouabain-sensitive 86Rb+ uptake. Furthermore, LK1 cells were different in the concentrations of intracellular Na+ (increases) and K+ (decreases) when compared to the HeLa parental cells. When grown in low K+ medium (0.2 mM K+), protein content and cell volume were increased in the LK1 cells, while the DNA content was not significantly different between both cell lines.  相似文献   

18.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:6,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

19.
In thyroidectomized rats, a single injection of L-2,,5,2'-triiodothyronine (T3) (50mug/100 g body weight) elicited at 45% increase in (Na+ + k+)-dependent adenosine triphosphatase (NaK-ATPase) activity of the membrane-rich fraction of renal cortex at the optimal time of response, 48 h after injection. Three successive doses of T3 (50 mug/100 g body weight), given on alternate days, increased NaK-ATPase by 67% in the renal cortex but had no significant effect on the outer medulla or the papilla. Moreover, T3 had no effect on Mg2+-dependent adenosine trisphatase (MgATPase) in cortex, cedulla, or papilla. Three doses of T3 (50 mug/100 g body weight) given on alternate days to thyroidectomized rats elecited a 134, 79, and 46% increase in Vmax for ATP, Na4, and K+, respectively. There were no changes in the Km for ATP or the K1/2 values for Na+ and K+. Two methods were used to estimate the effect of T3 on the number of NaK-ATPase units (assumed to represent the number of Na+ pump sites); rat renal plasma membrane fractions were incubated with [gamma-32P]ATP, Mg2+, and Na+; the 32P-labeled membrane protein yeild was quantitatively dependent on Na+ and was hydrolyzed on addition of K+. There was a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of phosphorylated intermediate formed, in renal cortical membrane fractions from thyroidectomized rats given T3 or the diluent. There was also a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of [3H]ouabain specifically bound (Na+-, Mg2+-, APT-dependent) to the NaK-ATPase preparation. Injection of T3 resulted in a 70% increase in NaK-ATPase activity, a 79% increase in formation of the phosphorylated intermediate, and a 65% increase in the [H]ouabain specifically bound to the NaK-ATPase system. The T3-dependent increases in Vmax for ATP, Na+, and K+ and the proportionate increases in the phosphorylated intermediate and in the amount of [3H]ouabain bound indicate that T3 increases the number of NaK-ATPase units and that this increase accounts for the increase in NaK-ATPase activity.  相似文献   

20.
The early activation of Na+,K+-ATPase-mediated ion fluxes after concanavalin A (ConA) stimulation of pig lymphocytes is caused by an increase in intracellular Na+ concentration. A second mechanism of regulation of Na+,K+-ATPase activity becomes apparent between 3 and 5 h after mitogenic stimulation, but prior to onset of increase in cell volume; this consists of an increase (about 75%) in the number of ouabain-binding sites (from 35 X 10(3) +/- 12 X 10(3)/cell in resting to 60 X 10(3) +/- 27 X 10(3)/cell in activated lymphocytes). The increase in ouabain binding was attributed to an increase in the number of active Na+,K+-ATPase molecules, based on the following evidence: there was an increase in the Vmax of ouabain binding, without variation in the Km; the increase in ouabain binding was accompanied by a proportional increase in K+ influx, when the assay was performed in the presence of the Na+ ionophore monesin, which was used to eliminate the difference in intracellular Na+ concentration between resting and activated cells; there was proportionality between ouabain-inhibitable ATPase activity in permeabilized cells and the number of ouabain-binding sites in resting and activated lymphocytes. The ConA-induced increase in ouabain-binding sites was influenced neither by amiloride nor by incubation in low Na+ medium, under conditions which prevented both increase in intracellular Na+ concentration and K+ influx. Increase in intracellular Na+ concentration was ineffective in altering the number of active pump molecules in resting cells. During incubation with ConA, the presence of ouabain did not affect the increase in ouabain-binding sites; thus, regulation of the number of pump sites is independent of the regulation of their activity. The ConA-induced increase in number of ouabain-binding sites did not require protein synthesis; indeed, cycloheximide, anisomycin, and puromycin, under conditions in which they inhibited protein synthesis by by 95%, induced the increase to approximately the same extent as did ConA. This suggests the presence in resting lymphocytes of a rapidly turning over protein that either prevents the ATPase subunits from assembling or from integrating into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号