首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  相似文献   

2.
The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A is known to induce cell cycle arrest by inhibiting CDK activity and by interfering with DNA replication through binding to proliferating cell nuclear antigen. Although the molecular mechanisms have been elucidated, the temporal dynamics, as well as the intracellular sites of the activity of p21 bound to cyclin/CDK complexes during cell cycle arrest, have not been fully investigated. In this study we have induced the expression of p21CDKN1A fused to green fluorescent protein (GFP) in HeLa cells, in order to visualize the intracellular localization of the inhibitor during the cell cycle arrest. We show that p21-GFP is preferentially expressed in association with cyclin E in cells arrested in G1 phase, and with cyclin A more than with cyclin B1 in cells arrested in the G2/M compartment. In addition, we show for the first time that p21-GFP colocalizes with cyclin E in the nucleolus of HeLa cells during the G1 phase arrest.O. Cazzalini and P. Perucca contributed equally to this work  相似文献   

3.
Although the developmental programs of plants and animals differ, key regulatory components of their cell cycle have been conserved. Particular attention has been paid to the role of the complexes between highly conserved cyclin and cyclin-dependent kinases in regulating progression through the cell cycle. The recent demonstration that roscovitine is a potent and selective inhibitor of the animal cyclin-dependent kinases cdc2 (CDK1), CDK2 and CDK5 prompted an investigation into its effects on progression through the plant cell cycle. Roscovitine induced arrests both in late G1 and late G2 phase in BY-2 tobacco cell suspensions. Both blocks were fully reversible when roscovitine was used at concentrations similar to those used in the animal system. Stationary-phase cells subcultured in the presence of roscovitine were arrested at a 2C DNA content. This arrest was more efficient without exogenous addition of plant growth regulator. Roscovitine induced a block in G1 earlier than that induced by aphidicolin. S-phase synchronized cells treated with roscovitine were arrested at a 4C DNA content at the G2/ M transition. The expression analysis of a mitotic cyclin (NTCYC1) indicated that the roscovitine-induced G2 block probably occurs in late G2. Finally, cells in metaphase were insensitive to roscovitine. The purified CDK/cyclin kinase activities of late G1 and early M arrested cells were inhibited in vitro by roscovitine. The implications of these experimental observations for the requirement for CDK activity during progression through the plant cell cycle are discussed.  相似文献   

4.
5.
6.
We previously demonstrated that nontransformed cells arrest in the G1 phase of the cell cycle when treated with low concentrations (21 nM) of staurosporine (1). Both normal and transformed cells are blocked in the G2 phase of the cell cycle when treated with higher concentrations (160 nM) of staurosporine (1,2). In the present study, we show that staurosporine inhibits the activity of fractionated p34cdc2 and p34cdc2-like kinases with IC50 values of 4-5 nM. We propose that the G2 phase arrest in the cell cycle caused by staurosporine is due, at least in part, to the inhibition of the p34cdc2 kinases.  相似文献   

7.
Akt is a key downstream effector of the PI3K signaling pathway and plays a role in cell growth and survival. Expression of a myristoylated constitutively active form of Akt (myr-Akt) in PC12 cells could override cell-growth arrest at G2/M phase and apoptosis that were induced by etoposide treatment. On the other hand, inactivation of Akt by expression of its dominant negative mutant form (km-Akt) inhibited cell proliferation by arresting the cells at G2/M phase. Expression of myr-Akt also led to an increase in the protein and mRNA levels of CDK1 and cyclin B1. Furthermore, EMSA data revealed that expression of myr-Akt promoted the binding of NF-Y to the consensus CCAAT promoter sequence, whereas expression of km-Akt almost completely abolished it. Moreover, the Akt activity was minimal in the cells that were arrested at G2/M phase by nocodazole treatment, but reached to a maximal level as the cells progressed to mitosis and G1 phase upon removal of the drug. Treatment with Akt inhibitors, but not with those of MEK or p70S6K, blocked the release of the cells from the nocodazole-induced G2/M arrest, further revealing that the Akt activity is required for G2/M phase transition. These results suggest that Akt facilitate cell-cycle progression at G2/M phase in PC12 cells and this Akt activity is correlated with upregulation of NF-Y DNA-binding activity and cyclin B1/CDK1 gene expression.  相似文献   

8.
9.
Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells.  相似文献   

10.
We examined concentration-dependent changes in cell cycle distribution and cell cycle-related proteins induced by butyric acid. Butyric acid enhanced or suppressed the proliferation of Jurkat human T lymphocytes depending on concentration. A low concentration of butyric acid induced a massive increase in the number of cells in S and G2/M phases, whereas a high concentration significantly increased the accumulation of cells in G2/M phase, suppressed the accumulation of cells in G0/G1 and S phases, and induced apoptosis that cell cycle-related protein expression in Jurkat cells treated with high levels of butyric acid caused a marked decrease in cyclin A, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 protein levels in G0/G1 and S phases, with apoptosis induction, and a decrease in cyclin B, Cdc25c and p27KIP1 protein levels, as well as an increase in p21CIP1/WAF1 protein level, in the G2/M phase. Taken together, our results indicate that butyric acid has bimodal effects on cell proliferation and survival. The inhibition of cell growth followed by the increase in apoptosis induced by high levels of butyric acid were related to an increase in cell death in G0/G1 and S phases, as well as G2/M arrest of cells. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

11.
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoblastic leukemia cells. To investigate cell cycle effects of GC in the absence of obscuring apoptotic events, we used human CCRF-CEM leukemia cells protected from cell death by transgenic bcl-2. GC treatment arrested these cells in the G1 phase of the cell cycle due to repression of cyclin D3 and c-myc. Cyclin E and Cdk2 protein levels remained high, but the kinase complex was inactive due to increased levels of bound p27(Kip1). Conditional expression of cyclin D3 and/or c-myc was sufficient to prevent GC-induced G1 arrest and p27(Kip1) accumulation but, importantly, did not interfere with the induction of apoptosis. The combined data suggest that repression of both, c-myc and cyclin D3, is necessary to arrest human leukemia cells in the G1 phase of the cell division cycle, but that neither one is required for GC-induced apoptosis.  相似文献   

12.
Treatment of cells with carcinogen Benzo[a]pyrene (B[a]P) allows cells to evade G1 arrest and induces cells abnormal proliferation. However, the mechanisms of its action at cellular level are not well understood. To address this question, normal human embryo lung diploid fibroblasts (HELF) were selected in the present study. We found that exposure of cells with 2.5 μM of B[a]P for 24 h resulted in a decrease of G1 population by 11.9% (P < 0.05) and a increase of S population by 17.2% (P < 0.05). Treatment of cells with B[a]P also caused dose-related activation of MAPK and induction of cyclin D1 protein expression, whereas the CDK4 protein levels were not significantly affected by B[a]P. Overexpression of cyclin D1 protein stimulated by B[a]P was significantly inhibited by 50 μM AG126 (an inhibitor of ERK1/2), but not by 25 μM SP600125 (an inhibitor of JNK1/2) or 5 μM SB203580 (an inhibitor of p38 mapk), suggesting that B[a]P-induced cyclin D1 expression was only regulated by ERK1/2 pathway. However, AG126, SP600125 or SB203580 led to cell cycle significantly arrested in G1 phase, indicating that ERK1/2, JNK1/2 and p38 mapk pathways are all required for B[a]P-induced G1/S transition. In addition, HELF cells transfecting with antisense cyclin D1 cDNA or antisense CDK4 cDNA showed significantly G1 arrest after B[a]P stimulation. These results suggested that B[a]P exposure accelerated the G1→S transition by activation of MAPK signaling pathways. Cyclin D1 and CDK4 are rate-limiting regulators of the G1→S transition and expression of cyclin D1 is predominantly regulated by ERK1/2 pathway in HELF cells.  相似文献   

13.
14.
For gastric cancers, the antineoplastic activity of cannabinoids has been investigated in only a few reports and knowledge regarding the mechanisms involved is limited. We have reported previously that treatment of gastric cancer cells with a cannabinoid agonist significantly decreased cell proliferation and induced apoptosis. Here, we evaluated the effects of cannabinoids on various cellular mediators involved in cell cycle arrest in gastric cancer cells. AGS and MKN-1 cell lines were used as human gastric cancer cells and WIN 55,212-2 as a cannabinoid agonist. Cell cycles were analyzed by flow cytometry and western blotting. Treatment with WIN 55,212-2 arrested the cell cycle in the G0/G1 phase. WIN 55,212-2 also upregulated phospho-ERK1/2, induced Kip1/p27 and Cip1/WAF1/p21 expression, decreased cyclin D1 and cyclin E expression, decreased Cdk 2, Cdk 4, and Cdk 6 expression levels, and decreased phospho-Rb and E2F-1 expression. ERK inhibitor decreased the proportion of G0/G1 phase which was induced by WIN 55,212-2. Inhibition of pAKT led to cell cycle arrest in gastric cancer cells. Cell cycle arrest preceded apoptotic response. Thus, this cannabinoid agonist can reduce gastric cancer cell proliferation via G1 phase cell cycle arrest, which is mediated via activation of the MAPK pathway and inhibition of pAKT.  相似文献   

15.
Some hepatitis C virus (HCV) proteins, including core protein, deregulate the cell cycle of infected cells, thereby playing an important role in the viral pathogenesis of HCC. Thus far, there are only few studies that have deeply investigated in depth the effects of the HCV core protein expression on the progression through the G1/S and G2/M phases of the cell cycle. To shed light on the molecular mechanisms by which the HCV core protein modulates cell proliferation, we have examined its effects on cell cycle in hepatocarcinoma cells. We show here that HCV core protein perturbs progression through both the G1/S and the G2/M phases, by modulating the expression and the activity of several cell cycle regulatory proteins. In particular, our data provided evidence that core-dependent deregulation of the G1/S phase and its related cyclin-CDK complexes depends upon the ERK1/2 pathway. On the other hand, the viral protein also increases the activity of the cyclin B1-CDK1 complex via the p38 MAPK and JNK pathways. Moreover, we show that HCV core protein promotes nuclear import of cyclin B1, which is affected by the inhibition of both the p38 and the RNA-dependent protein kinase (PKR) activities. The important role of p38 MAPK in regulating G2/M phase transition has been previously documented. It is becoming clear that PKR has an important role in regulating both the G1/S and the G2/M phase, in which it induces M phase arrest. Based on our model, we now show, for the first time, that HCV core expression leads to deregulation of the mitotic checkpoint via a p38/PKR-dependent pathway.  相似文献   

16.
Estrogen antagonists inhibit cell cycle progression in estrogen-responsive cells, but the molecular mechanisms are not fully defined. Antiestrogen-mediated G(0)/G(1) arrest is associated with decreased cyclin D1 gene expression, inactivation of cyclin D1-cyclin dependent kinase (Cdk) 4 complexes, and decreased phosphorylation of the retinoblastoma protein (pRb). We now show that treatment of MCF-7 breast cancer cells with the pure estrogen antagonist ICI 182780 results in inhibition of cyclin E-Cdk2 activity prior to a decrease in the G(1) to S phase transition. This decrease was dependent on p21(WAF1/Cip1) since treatment with antisense oligonucleotides to p21 attenuated the effect. Recruitment of p21 to cyclin E-Cdk2 complexes was in turn dependent on decreased cyclin D1 expression since it was apparent following treatment with antisense cyclin D1 oligonucleotides. To define where within the G(0) to S phase continuum antiestrogen-treated cells arrested, we assessed the relative abundance and phosphorylation state of pocket protein-E2F complexes. While both pRb and p107 levels were significantly decreased, p130 was increased 4-fold and was accompanied by the formation of p130.E2F4 complexes and the accumulation of hyperphophorylated E2F4, putative markers of cellular quiescence. Thus, ICI 182780 inhibits both cyclin D1-Cdk4 and cyclin E-Cdk2 activity, resulting in the arrest of MCF-7 cells in a state with characteristics of quiescence (G(0)), as opposed to G(1) arrest.  相似文献   

17.
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases. Previous RNA interference (RNAi) experiments in Trypanosoma brucei indicated that cyclin E1, cdc2-related kinase (CRK)1 and CRK2 are involved in regulating G1/S transition, whereas cyclin B2 and CRK3 play a pivotal role in controlling the G2/M checkpoint. To search for potential interactions between the other cyclins and CRKs that may not have been revealed by the RNAi assays, we used the yeast two-hybrid system and an in vitro glutathione-S-transferase pulldown assay and observed interactions between cyclin E1 and CRK1, CRK2 and CRK3. Cyclins E1-E4 are homologues of yeast Pho80 cyclin. But yeast complementation assays indicated that none of them possesses a Pho80-like function. Analysis of cyclin E1+CRK1 and cyclin E1+CRK2 double knockdowns in the procyclic form of T. brucei indicated that the cells were arrested more extensively in the G1 phase beyond the cumulative effect of individual knockdowns. But BrdU incorporation was impaired significantly only in cyclin E1+CRK1-depleted cells, whereas a higher percentage of cyclin E1+CRK2 knockdown cells assumed a grossly elongated posterior end morphology. A double knockdown of cyclin E1 and CRK3 arrested cells in G2/M much more efficiently than if only CRK3 was depleted. Taken together, these data suggest multiple functions of cyclin E1: it forms a complex with CRK1 in promoting G1/S phase transition; it forms a complex with CRK2 in controlling the posterior morphogenesis during G1/S transition; and it forms a complex with CRK3 in promoting passage across the G2/M checkpoint in the trypanosome.  相似文献   

18.
Kim HR  Lee CH  Choi YH  Kang HS  Kim HD 《IUBMB life》1999,48(4):425-428
Geldanamycin (GA), a benzoquinone ansamycin, is one of the specific inhibitors of 90-kDa heat shock protein and induces growth inhibition and apoptosis in certain cancer cell lines. We have investigated the mechanism of GA-induced growth inhibition in K562 erythroleukemic cells. DNA flow-cytometric analysis indicated that GA-induced growth arrest was associated with G2/M phase arrest of the cell cycle. GA treatment down-regulated the expression of cyclin B1 and inhibited phosphorylation of Cdc2 protein, both key regulatory proteins at the G2/M boundary. GA also markedly inhibited the Cdc2 kinase activity, which may be in part a result of up-regulation of p27KIP1 by GA. The present results suggest a novel mechanism that p27KIP1 could be involved in the regulation of G2 to M phase transition.  相似文献   

19.
Cyclin-dependent kinase 2 (Cdk2) is essential for initiation of DNA synthesis in higher eukaryotes. Biochemical studies in Xenopus egg extracts and microinjection studies in human cells have suggested an additional function for Cdk2 in activation of Cdk1 and entry into mitosis. To further examine the role of Cdk2 in human cells, we generated stable clones with inducible expression of wild-type and dominant-negative forms of the enzyme (Cdk2-wt and Cdk2-dn, respectively). Both exogenous proteins associated efficiently with endogenous cyclins. Cdk2-wt had no apparent effect on the cell division cycle, whereas Cdk2-dn inhibited progression through several distinct stages. Cdk2-dn induction could arrest cells at the G1/S transition, as previously observed in transient expression studies. However, under normal culture conditions, Cdk2-dn induction primarily arrested cells with S and G2/M DNA contents. Several observations suggested that the latter cells were in G2 phase, prior to the onset of mitosis: these cells contained uncondensed chromosomes, low levels of cyclin B-associated kinase activity, and high levels of tyrosine-phosphorylated Cdk1. Furthermore, Cdk2-dn did not delay progression through mitosis upon release of cells from a nocodazole block. Although the G2 arrest imposed by Cdk2-dn was similar to that imposed by the DNA damage checkpoint, the former was distinguished by its resistance to caffeine. These findings provide evidence for essential functions of Cdk2 during S and G2 phases of the mammalian cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号