首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that, in rats, central and peripheral ghrelin increases food intake mainly through activation of neuropeptide Y (NPY) neurons. In contrast, intracerebroventricular (ICV) injection of ghrelin inhibits food intake in neonatal chicks. We examined the mechanism governing this inhibitory effect in chicks. The ICV injection of ghrelin or corticotropin-releasing factor (CRF), which also inhibits feeding and causes hyperactivity in chicks. Thus, we examined the interaction of ghrelin with CRF and the hypothalamo-pituitary-adrenal (HPA) axis. The ICV injection of ghrelin increased plasma corticosterone levels in a dose-dependent or a time-dependent manner. Co-injection of a CRF receptor antagonist, astressin, attenuated ghrelin-induced plasma corticosterone increase and anorexia. In addition, we also investigated the effect of ghrelin on NPY-induced food intake and on expression of hypothalamic NPY mRNA. Co-injection of ghrelin with NPY inhibited NPY-induced increase in food intake, and the ICV injection of ghrelin did not change NPY mRNA expression. These results indicate that central ghrelin does not interact with NPY as seen in rodents, but instead inhibits food intake by interacting with the endogenous CRF and its receptor.  相似文献   

2.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

3.
In mammals and birds, neuropeptide Y (NPY) and gamma-aminobutyric acid (GABA) are found in brain areas known to be involved in the control of ingestive behavior and act to increase voluntary food intake. In rats, significant evidence suggest a functional and behavioral interaction between NPY and GABA mediated transmission in various brain regions, including the arcuate and paraventricular nuclei of the hypothalamus which can be important in the regulation of feeding behavior. In the present study, the effect of intracerebroventricular (ICV) administration of NPY and GABA receptor antagonists on food intake was examined in neonatal chicks. The ICV injection of NPY strongly stimulated food intake while co-administration of NPY and picrotoxin, a GABAA antagonist, (but not CGP54626, a GABAB antagonist) weakened food intake induced by NPY. These results suggest that central NPY stimulates food intake in neonatal chicks by interaction with the GABAergic system via GABAA receptors.  相似文献   

4.
The incidence of juvenile obesity is increasing at an alarming rate. In adults, central insulin administration decreases hypothalamic orexigenic neuropeptides, food intake and body weight more effectively in males than females. Mechanisms regulating energy balance in juvenile animals are inherently different from those in adults due to differences in growth rates and hormonal milieu. Therefore, we sought to determine if central insulin treatment in juvenile rats (4 wk) would have similar sex-dependent effects on food intake as those reported in adult rats. Twenty-four hour food intake was measured following icv saline or insulin (0.01 or 0.1 U) prior to the onset of dark phase of the light cycle. An additional set of animals was used to assess the effects of central insulin on hypothalamic orexigenic (NPY, AgRP) and anorexigenic (POMC) neuropeptide mRNA expression. In both males and females, insulin reduced meal size initially (first 4 h) and later decreased meal frequency (4-24 h) to reduce cumulative food intake. Consistent with this, central insulin decreased hypothalamic NPY and AgRP and increased POMC mRNA expression. In contrast to adult studies, there were no demonstrated sex differences. These studies indicate that juvenile females and males are equally sensitive to central insulin anorexigenic effects, perhaps due to a lack of circulating gonadal hormones. The anorexigenic responsiveness of both genders suggests a potential pharmacologic approach to childhood obesity.  相似文献   

5.
In vertebrates, the neuropeptide Y (NPY) family peptides have been recognized as key players in food intake regulation. NPY centrally promotes feeding, while peptide YY (PYY) and pancreatic polypeptide (PP) mediate satiety. The teleost tetraploidization is well-known to generate duplicates of both NPY and PYY; however, the functional diversification between the duplicate genes, especially in the regulation of food intake, remains unknown. In this study, we identified the two duplicates of NPY and PYY in Nile tilapia (Oreochromis niloticus). Both NPYa and NPYb were primarily expressed in the central nervous system (CNS), but the mRNA levels of NPYb were markedly lower than those of NPYa. Hypothalamic mRNA expression of NPYa, but not NPYb, decreased after feeding and increased after 7-days of fasting. However, both NPYa and NPYb caused a significant increase in food intake after an intracranial injection of 50 ng/g body weight dose. PYYb, one of the duplicates of PYY, had an extremely high expression in the foregut and midgut, whereas another form of duplicate PYYa showed only moderate expression in the CNS. Both hypothalamic PYYa and foregut PYYb mRNA expression increased after feeding and decreased after 7-days of fasting. Furthermore, the intracranial injection of PYYb decreased food intake, but PYYa had no significant effect. Our results suggested that although the mature peptides of NPYa and NPYb can both stimulate food intake, NPYa is the main endogenous functional NPY for feeding regulation. A functional division has been identified in the duplicates of PYY, which deems PYYb as a gut-derived anorexigenic peptide and PYYa as a CNS-specific PYY in Nile tilapia.  相似文献   

6.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

7.
Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by alpha-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp(-/-)) mice to examine the physiological role of AgRP. Agrp(-/-) mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp(-/-) mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp(-/-) mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp(-/-);Npy(-/-)) mice to determine whether NPY or AgRP plays a compensatory role in Agrp(-/-) or NPY-deficient (Npy(-/-)) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp(-/-);Npy(-/-) mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.  相似文献   

8.
9.
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in many animals. Most of the supporting evidence for the effects of NPY has been gathered in mammalian species using porcine NPY. To investigate the effects of NPY on precocial feeding initiation in chicks, we firstly used chicken NPY (cNPY) to study its role in food intake and spontaneous activities in 3-day-old male chicks. Food intake was monitored at different times after intracerebroventricular (ICV) injection of cNPY (2.5, 5.0 or 10.0 μg/10 μL) and anti-cNPY antibody (anti-cNPY) (1:9000, 1:3000 or 1:1000 in dilution). cNPY given at different doses significantly increased food intake at 30 min, 60 min, 90 min and 120 min after injection. Chicks treated with 5.0 μg/10 μL of cNPY showed a maximal 4.48 fold increase in food intake comparing to the control at 30 min. There is still more than 2 fold increase in food intake at 120 min after injection of cNPY. Food intake was significantly inhibited by a single ICV injection of anti-cNPY diluted to 1:9000 (60% inhibition), 1:3000 (92% inhibition), and 1:1000 (95% inhibition) at 30 min with 1:1000 being the maximally effective concentration. The inhibitory effects of anti-cNPY (diluted to1:9000, 1:3000, 1:1000) at 120 min post ICV injection were 22%, 42% and 46%, respectively. But ICV of anti-cNPY (1:3000 in dilution) did not block the orexigenic effect of 2.5 μg/10 μL of cNPY. ICV injection of different concentrations of cNPY increases locomotor activity in a dose-dependent manner while ICV anti-cNPY greatly decreased the distance moved by each chick compared to control groups. Taken together, our results demonstrated that cNPY has a promoting effect on chick food intake and locomotor activity, and that endogenous cNPY might play a positive role in regulating precocial feeding behavior in newly hatched chicks.  相似文献   

10.
Morley JE  Farr SA  Sell RL  Hileman SM  Banks WA 《Peptides》2011,32(4):776-780
In recent years, there have been a large number of neuropeptides discovered that regulate food intake. Many of these peptides regulate food intake by increasing or decreasing nitric oxide (NO). In the current study, we compared the effect of the food modulators ghrelin, NPY and CCK in NOS KO mice. Satiated homozygous and heterozygous NOS KO mice and their wild type controls were administered ghrelin ICV. Food intake was measured for 2 h post injection. Ghrelin did not increase food intake in the homozygous NOS KO mice compared to vehicle treated NOS KO mice, whereas food intake was increased in the wild type controls compared to vehicle treated wild type controls. NPY was administered ICV and food intake measured for 2 h. Homozygous NOS KO mice showed no increase in food intake after NPY administration, whereas the wild type controls did. In our final study, we administered CCK intraperitoneally to homozygous and heterozygous NOS KO mice and their wild type controls after overnight food deprivation. Food intake was measured for 1 h after injection. CCK inhibited food intake in wild type mice after overnight food deprivation, however, CCK failed to inhibit food intake in the NOS KO mice. The heterozygous mice showed partial food inhibition after the CCK. The current results add further support to the theory that NO is a central mediator in food intake.  相似文献   

11.
Running wheel access and resulting voluntary exercise alter food intake and reduce body weight. The neural mechanisms underlying these effects are unclear. In this study, we first assessed the effects of 7 days of running wheel access on food intake, body weight, and hypothalamic gene expression. We demonstrate that running wheel access significantly decreases food intake and body weight and results in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus (DMH) but not the paraventricular nucleus. Seven-day running wheel access also results in elevated arcuate nucleus and DMH neuropeptide Y gene expression. To assess a potential role for elevated DMH CRF activity in the activity-induced changes in food intake and body weight, we compared changes in food intake, body weight, and hypothalamic gene expression in rats receiving intracerebroventricular (ICV) CRF antagonist alpha-helical CRF or vehicle with or without access to running wheels. During a 4-day period of running wheel access, we found that exercise-induced reductions of food intake and body weight were significantly attenuated by ICV injection of the CRF antagonist. The effect on food intake was specific to a blockade of activity-induced changes in meal size. Central CRF antagonist injection further increased DMH CRF mRNA expression in exercised rats. Together, these data suggest that DMH CRF play a critical role in the anorexia resulting from increased voluntary exercise.  相似文献   

12.
Neuropeptide Y (NPY) and peptide YY (PYY) were injected intracerebroventricularly (ICV) in broiler chicks. Both NPY and PYY markedly increased food intake during the first hour post-injection compared to saline (SAL) controls. Food intake doubled in chicks given 5 micrograms NPY. A response surface analysis suggested that following ICV injection of NPY, maximum food intake occurred, using a dose of 9 micrograms. In contrast, an estimated dose between one and 5 micrograms PYY resulted in maximum food intake, giving the latter a slightly higher potency. Time spent drinking was not significantly different among NPY, PYY and SAL groups. Chicks given NPY or PYY also spent significantly less time standing while those given PYY spent significantly less time preening compared to controls.  相似文献   

13.
Leptin inhibits food intake and lowers plasma insulin concentrations. This study was designed to determine whether leptin acts independent of food-intake regulation to affect meal-induced increases in plasma insulin concentrations. Leptin-deficient, Lep(ob)/Lep(ob) mice were administered 1 microg leptin intracerebroventricularly (ICV) or intraperitoneally. Food intake and plasma insulin concentrations of mice administered leptin ICV before a meal were lower, as expected, than were intakes and plasma insulin concentrations of mice administered vehicle ICV. However when food intake was controlled, meal-induced increases in plasma insulin were unaffected by ICV administration of leptin. Intraperitoneal administration of 1 microg leptin before a meal lowered meal-induced increases in plasma insulin concentrations without influencing the size of the meal. We conclude that plasma leptin concentrations can affect meal-induced insulin secretion independent of the central nervous system actions of leptin associated with food-intake regulation.  相似文献   

14.
Previous work has characterized an anorexic action for endogenous, central nervous system corticotropin-releasing factor (CRF). Central injection of CRF decreases food intake induced pharmacologically by various appetite stimulants and a CRF antagonist attenuates restraint stress anorexia. Also, stressful physiological stimuli that are relevant to ingestive regulation, such as glucoprivation and protein nutrient deficiency, activate CRF systems. The present experiments examined the effects of exogenously administered CRF and a CRF antagonist, alpha-helical CRF(9-41), on spontaneous feeding induced by neuropeptide Y (NPY) and by a tail-pinch stressor. Pretreatment with a low dose of the CRF antagonist (1 microgram ICV) enhanced the hyperphagia induced by NPY while reducing the latency to begin feeding and increasing the duration of eating during tail pinch. Higher doses of alpha-hel CRF (5 and 25 micrograms ICV) exhibited diminishing or opposite effects. In contrast, CRF pretreatment (0.02, 0.1, and 0.5 microgram ICV) blocked the acquisition of tail-pinch feeding. Hence, while CRF administration impairs intake in these and other feeding paradigms, alpha-hel CRF actually facilitated dose dependently the intensity of the feeding response to NPY and tail pinch. These results suggest that endogenous CRF systems may play a role in modulating excessive feeding under conditions of evoked appetite and that brain CRF systems regulate feeding when excessive intake threatens to compromise the performance of other noningestive behaviors.  相似文献   

15.
Objective: Central feeding regulation involves both anorectic and orexigenic pathways. This study examined whether targeting both systems could enhance feeding inhibition induced by anorectic neuropeptides. Research Methods and Procedures: Experiments were carried out in 24‐hour fasted rats. Intracerebroventricular (ICV) injections were accomplished through stereotaxically implanted cannulae aimed at the lateral cerebral ventricle. Food intake of standard rat chow pellets was subsequently recorded for 2 hours. Results: Blockade of orexigenic central opioids and neuropeptide Y (NPY) by ICV naloxone (25 μg) or the NPY receptor antagonist [d‐Trp32]NPY (NPY‐Ant; 10 μg) powerfully augmented the feeding suppression induced by ICV glucagon‐like peptide 1 (7‐36)‐amide (GLP‐1; 10 μg) or xenin‐25 (xenin; 15 μg) in 24‐hour fasted rats. Most importantly, in combination with naloxone or NPY‐Ant, even a low and ineffective dose of GLP‐1 (5 μg) caused a 40% reduction of food intake, which was augmented further when both antagonists were given in combination with GLP‐1. The combination of GLP‐1 (5 μg) and xenin (10 μg) at individually ineffective doses caused a 46% reduction of food intake, which was abolished at a 10‐fold lower dose. This ineffective dose, however, reduced food intake by 72% when administered in combination with naloxone and NPY‐Ant. Discussion: Targeting up to four pathways of feeding regulation in the central nervous system by blockade of endogenous feeding stimuli and simultaneous administration of anorectic neuropeptides potentiated reduction of food intake. This raises a promising perspective for treatment of obesity.  相似文献   

16.
The brain-gut peptide cholecystokinin (CCK) inhibits food intake following peripheral or site directed central administration. Peripheral exogenous CCK inhibits food intake by reducing the size and duration of a meal. Antagonist studies have demonstrated that the actions of the exogenous peptide mimic those of endogenous CCK. Antagonist administration results in increased meal size and meal duration. The feeding inhibitory actions of CCK are mediated through interactions with CCK-1 receptors. The recent identification of the Otsuka-Long-Evans-Tokushima Fatty (OLETF) rat as a spontaneous CCK-1 receptor knockout model has allowed a more comprehensive evaluation of the feeding actions of CCK. OLETF rats become obese and develop non-insulin dependent diabetes mellitus (NIDDM). Consistent with the absence of CCK-1 receptors, OLETF rats do not respond to exogenous CCK. OLETF rats are hyperphagic and their increased food intake is characterized by a large increase in meal size with a decrease in meal frequency that is not sufficient to compensate for the meal size increase. Deficits in meal size control are evident in OLETF rats as young as 2 days of age. OLETF obesity is secondary to the increased food intake. Pair feeding to amounts consumed by intact control rats normalizes body weight, body fat and elevated insulin and glucose levels. Hypothalamic arcuate nucleus peptide mRNA expression in OLETF rats is appropriate to their obesity and is normalized by pair feeding. In contrast, pair fed and young pre-obese OLETF rats have greatly elevated dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) mRNA expression. Elevated DMH NPY in OLETF rats appears to be a consequence of the absence of CCK-1 receptors. In intact rats NPY and CCK-1 receptors colocalize to neurons within the compact subregion of the DMH and local CCK administration reduces food intake and decreases DMH NPY mRNA expression. We have proposed that the absence of DMH CCK-1 receptors significantly contributes to the OLETF's inability to compensate for their meal size control deficit leading to their overall hyperphagia. Access to a running wheel and the resulting exercise normalizes food intake and body weight in OLETF rats. When given access to running wheels for 6 weeks shortly after weaning, OLETF rats do not gain weight to the same degree as sedentary OLETF rats and do not develop NIDDM. Exercise also prevents elevated levels of DMH NPY mRNA expression, suggesting that exercise exerts an alternative, non-CCK mediated, control on DMH NPY. The OLETF rat is a valuable model for characterizing actions of CCK in energy balance and has provided novel insights into interactions between exercise and food intake.  相似文献   

17.
It has recently been suggested that gut-derived PYY(3-36) may be involved in the central mediation of post-prandial satiety signals. We have examined the acute effects of peripherally administered PYY(3-36) on food intake and hypothalamic gene expression of neuropeptides in mice. A single intraperitoneal injection of PYY(3-36) to mice that had been fasted for 24h resulted in a highly significant reduction in food intake at 6 and 24h post-injection but not at 48h. However, in freely fed mice, food intake was unaltered by PYY(3-36) administration. In the arcuate nucleus POMC mRNA expression was significantly elevated at 6h and remained elevated at 24h following PYY(3-36) injection. By contrast NPY mRNA expression in the arcuate nucleus was suppressed at 6h but not at 24h post-injection. In the lateral hypothalamus there were no differences in MCH mRNA expression at either time point. In conclusion, peripherally administered PYY(3-36) has a suppressive effect on food intake that is more prominent in recently fasted mice and lasts up to 24 h. This is associated with a short-lived suppression of NPY mRNA, a longer lasting increase in POMC mRNA but no change in MCH mRNA expression.  相似文献   

18.
为阐明γ-氨基丁酸(GABA)对鳜(Siniperca chuatsi)摄食和食欲的影响, 对鳜脑室注射生理盐水和不同剂量的GABA(50、125、500和2000 μg)。结果显示, 注射125 μg GABA组的鳜在2h内摄食量显著升高。实时荧光定量PCR (RT-qPCR)结果显示, 注射125 μg GABA 0.5h后, 鳜鱼脑中AgRP和NPY mRNA表达量上调, CART和POMC mRNA表达量下调, 都和鳜摄食量增加相一致。相比于对照组, 注射GABA后Leptin-R的mRNA表达量在0.5h和2h都有显著下降。这些结果表明GABA可能通过leptin的信号通路来影响食欲, 进而影响摄食量。研究结果可以为GABA在水产饲料中的应用提供理论依据。  相似文献   

19.
Objective: To model how consuming a low‐carbohydrate (LC) diet influences food intake and body weight. Research Methods and Procedures: Food intake and body weight were monitored in rats with access to chow (CH), LC‐high‐fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan‐II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin‐4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC‐HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. Results: HF rats consumed more food and gained more weight than rats on CH or LC‐HF diets. Despite similar intakes and weight gains, LC‐HF rats had increased adiposity relative to CH rats. LC‐HF rats were more sensitive to melanotan‐II and less sensitive to SHU9119. LC‐HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food‐deprived rats. LC‐HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Discussion: Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC‐HF diet affects food intake by reducing compensatory responses to food deprivation.  相似文献   

20.
Intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits food intake in goldfish, unlike the orexigenic action in rodents, via the melanocortin system with suppression of neuropeptide Y (NPY) mRNA expression. We therefore investigated the neuronal relationship between MCH- and NPY-containing neurons in the goldfish brain, using a double-immunofluorescence method and confocal laser scanning microscopy. MCH- and NPY-like immunoreactivities were distributed throughout the brain. In particular, MCH-containing nerve fibers or endings lay in close apposition to NPY-containing neurons in a specific region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These observations suggest that MCH-containing neurons provide direct input to NPY-containing neurons in the NPPv of goldfish, and that MCH plays a crucial role in the regulation of feeding behavior as an anorexigenic neuropeptide, inhibiting the orexigenic activity of NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号