首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein ubiquitination requires the sequential activity of three enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-ligase (E3). The ubiquitin-transfer machinery is hierarchically organized; for every ubiquitin-activating enzyme, there are several ubiquitin-conjugating enzymes, and most ubiquitin-conjugating enzymes can in turn interact with multiple ubiquitin ligases. Despite the central role of ubiquitin-activating enzyme in this cascade, a crystal structure of a ubiquitin-activating enzyme is not available. The enzyme is thought to consist of an adenylation domain, a catalytic cysteine domain, a four-helix bundle, and possibly, a ubiquitin-like domain. Its adenylation domain can be modeled because it is clearly homologous to the structurally known adenylation domains of the activating enzymes for the small ubiquitin-like modifier (SUMO) and for the protein encoded by the neuronal precursor cell-expressed, developmentally down-regulated gene 8 (NEDD8). Low sequence similarity and vastly different domain lengths make modeling difficult for the catalytic cysteine domain that results from the juxtaposition of two catalytic cysteine half-domains. Here, we present a biochemical and crystallographic characterization of the two half-domains and the crystal structure of the larger, second catalytic cysteine half-domain of mouse ubiquitin-activating enzyme. We show that the domain is organized around a conserved folding motif that is also present in the NEDD8- and SUMO-activating enzymes, and we propose a tentative model for full-length ubiquitin-activating enzyme.  相似文献   

2.
The ubiquitin/proteasome pathway is a highly conserved mechanism of proteolysis in all eukaryotes. Ubiquitin (Ub) is conjugated to proteolytic substrates through the sequential action of ubiquitin-activating (E1/Uba) and ubiquitin-conjugating (E2/Ubc) enzymes. The mechanism of substrate recognition and ubiquitination is an area of active investigation, and we have begun a site-directed mutagenesis approach to define the biochemical and biophysical properties of ubiquitin-conjugating enzymes. We have characterized a specific mutation in Ubc4 (Ubc4(P62S)) which was previously shown to cause a temperature-sensitive growth defect in several other Ubc's. Ubc4(P62S) was rapidly degraded in vivo, contributing to the loss of function. However, reconstitution experiments revealed that the catalytic activity of Ubc4(P62S) was reversibly inactivated at 37 degrees C, demonstrating that the primary defect of Ubc4(P62S) is its inability to form a ubiquitin thioester bond at high temperature. The in vivo defect is compounded by increased susceptibility of Ubc4(P62S) to degradation by the ubiquitin/proteasome pathway. We have exploited the temperature-dependent degradation of the P62S mutant to destabilize an otherwise stable test protein (glutathione S-transferase). The use of this mutant may provide a useful cis-acting temperature-inducible degradation signal.  相似文献   

3.
The ubiquitin system represents a selective mechanism for intracellular proteolysis in eukaryotic cells that involves the sequential activity of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3). The identification of these proteins and their cellular targets, as well as structural data, are essential to understanding how this system operates in the eukaryotic cell. In the present study, the open reading frame of the human ubiquitin-conjugating enzyme UBE2G2 was isolated from a human brain cDNA panel, cloned into pET28a vector and expressed in Escherichia coli. The His-tagged protein was then purified through nickel-affinity chromatography and subjected to structural and functional studies using circular dichroism (CD) and an in vitro ubiquitin-binding assay, respectively. Our results showed that the production of the HISUBE2G2 protein in bacteria, carried out with 0.1 mM of IPTG at 30 degrees C, was successfully achieved, rendering high concentrations of soluble, pure and stable enzyme after a single purification step. The recombinant protein was able to bind ubiquitin molecules when exposed to a HeLa cell extract during the ubiquitin assay. Moreover, the fact that HISUBE2G2 was expressed in its active form is supported by the typical alpha/beta secondary structure specific to other class I E2 enzymes displayed during the CD assay.  相似文献   

4.
Identification of a substrate recognition site on Ubc9   总被引:1,自引:0,他引:1  
Human Ubc9 is homologous to ubiquitin-conjugating enzymes. However, instead of conjugating ubiquitin, it conjugates a ubiquitin homologue, small ubiquitin-like modifier 1 (SUMO-1), also known as UBL1, GMP1, SMTP3, PIC1, and sentrin. The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin-activating enzymes (E1), the three-dimensional structures of the ubiquitin-conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of substrates with Ubc9 has been studied using NMR spectroscopy. Peptides with sequences that correspond to those of the SUMO-1 conjugation sites from p53 and c-Jun both bind to a surface adjacent to the active site Cys93 of human Ubc9, which has been previously shown to include residues that demonstrate the most significant dynamics on the microsecond to millisecond time scale. Mutations in this region, Q126A, Q130A, A131D, E132A, Y134A, and T135A, were constructed to evaluate the role of these residues in SUMO-1 conjugation. These alterations have significant effects on the conjugation of SUMO-1 with the target proteins p53, E1B, and promyelocytic leukemia protein and define a substrate binding site on Ubc9. Furthermore, the SUMO-1 conjugation site of p53 does not form any defined secondary structure when either free or bound to Ubc9. This suggests that a defined secondary structure at SUMO-1 conjugation sites in target proteins is not necessary for recognition and conjugation by the SUMO-1 pathway.  相似文献   

5.
6.
Selective protein degradation by the 26S proteasome requires the covalent attachment of several ubiquitin molecules in the form of a multiubiquitin chain. Ubiquitylation usually involves three classes of enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2) and a ubiquitin ligase (E3). However, in some cases, multiubiquitylation requires the additional activity of certain ubiquitin-chain elongation factors. Yeast UFD2 (ubiquitin fusion degradation), for example, binds to oligoubiquitylated substrates (proteins modified by only a few ubiquitin molecules) and catalyses multiubiquitin-chain assembly in collaboration with E1, E2 and E3. Enzymes possessing this specific activity have been proposed to be termed 'E4 enzymes'. Recent studies have provided accumulating evidence that has led some researchers in the field to conclude that E4, indeed, represents a distinct and novel class of enzymes.  相似文献   

7.
Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together.  相似文献   

8.
Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.  相似文献   

9.
Ubiquitination is a widely studied regulatory modification involved in protein degradation, DNA damage repair, and the immune response. Ubiquitin is conjugated to a substrate lysine in an enzymatic cascade involving an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. Assays for ubiquitin conjugation include electrophoretic mobility shift assays and detection of epitope-tagged or radiolabeled ubiquitin, which are difficult to quantitate accurately and are not amenable to high-throughput screening. We have developed a colorimetric assay that quantifies ubiquitin conjugation by monitoring pyrophosphate released in the first enzymatic step in ubiquitin transfer, the ATP-dependent charging of the E1 enzyme. The assay is rapid, does not rely on radioactive labeling, and requires only a spectrophotometer for detection of pyrophosphate formation. We show that pyrophosphate production by E1 is dependent on ubiquitin transfer and describe how to optimize assay conditions to measure E1, E2, and E3 activity. The kinetics of polyubiquitin chain formation by Ubc13–Mms2 measured by this assay are similar to those determined by gel-based assays, indicating that the data produced by this method are comparable to methods that measure ubiquitin transfer directly. This assay is adaptable to high-throughput screening of ubiquitin and ubiquitin-like conjugating enzymes.  相似文献   

10.
11.
UBE1L2, a novel E1 enzyme specific for ubiquitin   总被引:1,自引:0,他引:1  
UBE1 is known as the human ubiquitin-activating enzyme (E1), which activates ubiquitin in an ATP-dependent manner. Here, we identified a novel human ubiquitin-activating enzyme referred to as UBE1L2, which also shows specificity for ubiquitin. The UBE1L2 sequence displays a 40% identity to UBE1 and also contains an ATP-binding domain and an active site cysteine conserved among E1 family proteins. UBE1L2 forms a covalent link with ubiquitin in vitro and in vivo, which is sensitive to reducing conditions. In an in vitro polyubiquitylation assay, recombinant UBE1L2 could activate ubiquitin and transfer it onto the ubiquitin-conjugating enzyme UbcH5b. Ubiquitin activated by UBE1L2 could be used for ubiquitylation of p53 by MDM2 and supported the autoubiquitylation of the E3 ubiquitin ligases HectH9 and E6-AP. The UBE1L2 mRNA is most abundantly expressed in the testis, suggesting an organ-specific regulation of ubiquitin activation.  相似文献   

12.
Ubiquitin-conjugating enzyme variants share significant sequence similarity with typical E2 (ubiquitin-conjugating) enzymes of the protein ubiquitination pathway but lack their characteristic active site cysteine residue. The MMS2 gene of Saccharomyces cerevisiae encodes one such ubiquitin-conjugating enzyme variant that is involved in the error-free DNA postreplicative repair pathway through its association with Ubc13, an E2. The Mms2-Ubc13 heterodimer is capable of linking ubiquitin molecules to one another through an isopeptide bond between the C terminus and Lys-63. Using highly purified components, we show here that the human forms of Mms2 and Ubc13 associate into a heterodimer that is stable over a range of conditions. The ubiquitin-thiol ester form of the heterodimer can be produced by the direct activation of its Ubc13 subunit with E1 (ubiquitin-activating enzyme) or by the association of Mms2 with the Ubc13-ubiquitin thiol ester. The activated heterodimer is capable of transferring its covalently bound ubiquitin to Lys-63 of an untethered ubiquitin molecule, resulting in diubiquitin as the predominant species. In (1)H (15)N HSQC ((1)H (15)N heteronuclear single quantum coherence) NMR experiments, we have mapped the surface determinants of tethered and untethered ubiquitin that interact with Mms2 and Ubc13 in both their monomeric and dimeric forms. These results have identified a surface of untethered ubiquitin that interacts with Mms2 in the monomeric and heterodimeric form. Furthermore, the C-terminal tail of ubiquitin does not participate in this interaction. These results suggest that the role of Mms2 is to correctly orient either a target-bound or untethered ubiquitin molecule such that its Lys-63 is placed proximally to the C terminus of the ubiquitin molecule that is linked to the active site of Ubc13.  相似文献   

13.
According to our current knowledge, protein ubiquitination involves three steps: activation of ubiquitin through formation of an energy-rich bond with an E1 ubiquitin-activating enzyme; and transfer of activated ubiquitin onto E2 ubiquitin-conjugating enzymes, which, in turn, alone, or in combination with E3 ubiquitin-protein ligase enzymes, transfer ubiquitin onto target proteins. A31N-ts20 cells are mouse embryo fibroblasts, thermosensitive for E1. We show here that: (a) the enzymatic activity of the enzyme is heat-inactivatable in vitro; and (b) a major mechanism responsible for E1 inactivation in vivo consists of accelerated destruction. Surprisingly, a >90% reduction in E1 abundance little alters the formation of the bulk of protein-ubiquitin conjugates when A31N-ts20 cells are grown at the nonpermissive temperature, indicating that cautious interpretation of results is required when studying ubiquitination of specific substrates using this cell line. Surprisingly, our data also indicate that, in vivo, ubiquitination of the various protein substrates in A31N-ts20 cells requires different amounts of E1, indicating that this mutant cell line can be used for unveiling the existence of differences in the intimate mechanisms responsible for the ubiquitination of the various cell proteins in vivo, and for providing criteria of reliability when developing in vitro ubiquitination assays for specific proteins.  相似文献   

14.
U box proteins as a new family of ubiquitin-protein ligases.   总被引:27,自引:0,他引:27  
The U box is a domain of approximately 70 amino acids that is present in proteins from yeast to humans. The prototype U box protein, yeast Ufd2, was identified as a ubiquitin chain assembly factor that cooperates with a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3) to catalyze ubiquitin chain formation on artificial substrates. E3 enzymes are thought to determine the substrate specificity of ubiquitination and have been classified into two families, the HECT and RING finger families. Six mammalian U box proteins have now been shown to mediate polyubiquitination in the presence of E1 and E2 and in the absence of E3. These U box proteins exhibited different specificities for E2 enzymes in this reaction. Deletion of the U box or mutation of conserved amino acids within it abolished ubiquitination activity. Some U box proteins catalyzed polyubiquitination by targeting lysine residues of ubiquitin other than lysine 48, which is utilized by HECT and RING finger E3 enzymes for polyubiquitination that serves as a signal for proteolysis by the 26 S proteasome. These data suggest that U box proteins constitute a third family of E3 enzymes and that E4 activity may reflect a specialized type of E3 activity.  相似文献   

15.
The involvement of red blood cell spectrin in the ubiquitination process was studied. Spectrin was found to form two ubiquitin-associated derivatives, a DTT-sensitive ubiquitin adduct and a DTT-insensitive conjugate, characteristic intermediate and final products of the ubiquitination reaction cascade. In addition to spectrin and ubiquitin, ubiquitin-activating enzyme (E1) and ATP were necessary and sufficient to form both the spectrin-ubiquitin adduct and conjugate. No exogenous ubiquitin-conjugating (E2) or ligase (E3) activities were required, suggesting that erythrocyte spectrin is an E2 ubiquitin-conjugating enzyme able to target itself. Both ubiquitin adduct and conjugate were linked to the alpha subunit of spectrin, suggesting that the ubiquitin-conjugating (UBC) domain and its target regions reside on the same subunit.  相似文献   

16.
Posttranslational modification by ubiquitination marks defective or outlived intracellular proteins for proteolytic degradation by the 26S proteasome. The ATP-dependent, covalent ligation and formation of polyubiquitin chains on substrate proteins requires the presence and activity of a set of ubiquitin activating and conjugating enzymes. While protein ubiquitination typically occurs in the cell cytosol or nucleus, defective mammalian spermatozoa become ubiquitinated on their surface during post-testicular sperm maturation in the epididymis, suggesting an active molecular mechanism for sperm quality control. Consequently, we hypothesized that the bioactive constituents of ubiquitin-proteasome pathway were secreted in the mammalian epididymal fluid (EF) and capable of ubiquitinating extrinsic substrates. Western blotting indeed detected the presence of the ubiquitin-activating enzyme E1 and presumed E1-ubiquitin thiol-ester intermediates, ubiquitin-carrier enzyme E2 and presumed E2-ubiquitin thiol-ester intermediates and the ubiquitin C-terminal hydrolase PGP 9.5/UCHL1 in the isolated bovine EF. Thiol-ester assays utilizing recombinant ubiquitin-activating and ubiquitin-conjugating enzymes, biotinylated substrates, and isolated bovine EF confirmed the activity of the ubiquitin activating and conjugating enzymes within EF. Ubiquitinated proteins were found to be enriched in the defective bull sperm fraction and appropriate proteasomal deubiquitinating and proteolytic activities were measured in the isolated EF by specific fluorescent substrates. The apocrine secretion of cytosolic proteins was visualized in transgenic mice and rats expressing the enhanced green fluorescent protein (eGFP) under the direction of ubiquitin-C promoter. Accumulation of eGFP, ubiquitin and proteasomes was detected in the apical blebs, the apocrine secretion sites of the caput epididymal epithelia of both the rat and mouse epididymal epithelium, although region-specific differences exist. Secretion of eGFP and proteasomes continued during the prolonged culture of the isolated rat epididymal epithelial cells in vitro. This study provides evidence that the activity of the ubiquitin system is not limited to the intracellular environment, contributing to a greater understanding of the sperm maturation process during epididymal passage.  相似文献   

17.
In this article, we summarize Arabidopsis genes encoding ubiquitin, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (E2s) and an additional selected set of proteins related to ubiquitylation. We emphasize comparisons to components from Saccharomyces cerevisiae, with occasional reference to animals. Among the E1 and E2s, Arabidopsis usually has two to four probable orthologs to one yeast gene. Also, Arabidopsis has genes with no likely ortholog in yeast, although they often have potential orthologs in animals. The large number of components with known function in ubiquitylation indicates that this process plays a complex role in cellular physiology.  相似文献   

18.

Background  

Ubiquitination is mediated by the sequential action of at least three enzymes: the E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase) proteins. Polyubiquitination of target proteins is also implicated in several critical cellular processes. Although Arabidopsis genome research has estimated more than 1,300 proteins involved in ubiquitination, little is known about the biochemical functions of these proteins. Here we demonstrate a novel, simple and high-sensitive method for in vitro analysis of ubiquitination and polyubiquitination based on wheat cell-free protein synthesis and luminescent detection.  相似文献   

19.
Ubiquitination is an essential process regulating turnover of proteins for basic cellular processes such as the cell cycle and cell death (apoptosis). Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Conjugation of target proteins with ubiquitin is then mediated by ubiquitin ligases (E3). Ubiquitination has been well characterized using mammalian cell lines and yeast genetics. However, the consequences of partial or complete loss of ubiquitin conjugation in a multi-cellular organism are not well understood. Here, we report the characterization of Uba1, the only E1 in Drosophila. We found that weak and strong Uba1 alleles behave genetically differently with sometimes opposing phenotypes. Whereas weak Uba1 alleles protect cells from cell death, clones of strong Uba1 alleles are highly apoptotic. Strong Uba1 alleles cause cell cycle arrest which correlates with failure to reduce cyclin levels. Surprisingly, clones of strong Uba1 mutants stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner giving rise to overgrowth phenotypes of the mosaic fly. We demonstrate that the non-autonomous overgrowth is caused by failure to downregulate Notch signaling in Uba1 mutant clones. In summary, the phenotypic analysis of Uba1 demonstrates that impaired ubiquitin conjugation has significant consequences for the organism, and may implicate Uba1 as a tumor suppressor gene.  相似文献   

20.
The U-box domain has been suggested to be a modified RING finger motif where the metal-coordinating cysteines and histidines have been replaced with other amino acids. Known U-box-containing proteins have been implicated in the ubiquitin/proteasome system. In a search for proteins interacting with the ubiquitin-conjugating enzyme UbcM4/UbcH7, we have identified a novel U-box containing protein, termed UIP5, that is exclusively found in the nucleus as part of a nuclear dot-like structure. Interaction between UbcM4 and UIP5 was observed in vivo and in vitro with bacterially expressed proteins. In addition to UbcM4, several other ubiquitin-conjugating enzymes (E2s) that share the same sequence within the L1 loop bind to UIP5. Mutational analysis showed that the U-box, like the RING finger in other proteins, forms the physical basis for the interaction with E2 enzymes. Further support for the structural similarity between U-box and RING finger comes from the observation that, in both cases, the same regions within the UbcM4 molecule are required for interaction. Our results establish at the molecular level a link between the U-box and the ubiquitin conjugating system and strongly suggest that proteins containing U-box domains are functionally closely related to RING finger proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号