首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active reactions of embryonic tissues to mechanical forces play an important role in morphogenesis. To study these reactions, experimental models that enable to evaluate the applied forces and the deformations of the tissues are required. A model based upon the active intrusion of a living early gastrula Xenopus embryo into a tube half the embryo in diameter is described. The intrusion is initially triggered by a suction force of several dozen Pa but then continues in the absence of external driving force, stopping immediately after the entire embryo has penetrated into the tube. The process can be stopped by cytoskeletal drugs or by the damage of the part of the embryo still non-aspirated and is associated with the transversal contraction and meridional elongation of the non-aspirated part of the embryo surface and quasi-periodic longitudinal contractions/extensions of the cells within the part already aspirated. We suggest that this reaction is an active response to the embryo deformation and discuss its morphogenetic role. The problem of estimating the elastic modules of embryonic tissues is also discussed.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Tendons transmit forces generated from muscle to bone making joint movements possible. Tendon collagen has a complex supramolecular structure forming many hierarchical levels of association; its main functional unit is the collagen fibril forming fibers and fascicles. Since tendons are enclosed by loose connective sheaths in continuity with muscle sheaths, it is likely that tendon sheaths could play a role in absorbing/transmitting the forces created by muscle contraction. In this study rat Achilles tendons were passively stretched in vivo to be observed at polarized light microscope (PLM), scanning electron microscope (SEM) and transmission electron microscope (TEM). At PLM tendon collagen fibers in relaxed rat Achilles tendons ran straight and parallel, showing a periodic crimp pattern. Similarly tendon sheaths showed apparent crimps. At higher magnification SEM and TEM revealed that in each tendon crimp large and heterogeneous collagen fibrils running straight and parallel suddenly changed their direction undergoing localized and variable modifications. These fibril modifications were named fibrillar crimps. Tendon sheaths displayed small and uniform fibrils running parallel with a wavy course without any ultrastructural aspects of crimp. Since in passively stretched Achilles tendons fibrillar crimps were still observed, it is likely that during the tendon stretching, and presumably during the tendon elongation in muscle contraction, the fibrillar crimp may be the real structural component of the tendon crimp acting as shock absorber. The peritendinous sheath can be stretched as tendon, but is not actively involved in the mechanism of shock absorber as the fibrillar crimp. The different functional behaviour of tendons and sheaths may be due to the different structural and molecular arrangement of their fibrils.  相似文献   

9.
Fibroblast locomotion is thought to generate tractional forces which lead to contraction and reorganisation of collagen in tissue development and repair. A culture force monitor device (CFM) was used to measure changes in force in fibroblast populated collagen lattices, which resulted from cytoskeletal reorganisation by cytochalasin B, colchicine, vinblastine, and taxol. Microfilament disruption abolished contraction forces, microtubule disruption elicited a new peak of contraction, while taxol stabilisation of microtubules produced a gradual fall in measured force across the collagen gel. Based on these measurements, it is suggested that the cell can be viewed as an engineering structure in which residual intracellular forces, from contractile microfilaments, exert compressive loading on microtubular elements. This microtubular structure appears to act as a “balanced space frame” (analogous to an aeroplane chassis), maintaining cell shape and consequently storing a residual internal tension (RIT). In dermal fibroblasts this hidden RIT was up to 33% of the measurable force exerted on the collagen gel. Phenotypic differences between space frame organisation and RIT levels could explain site and pathological variations in fibroblast contraction. © 1996 Wiley-Liss, Inc.  相似文献   

10.
11.
The superficial (SDF) and deep digital flexor (DDF) muscles are critical for equine forelimb locomotion. Knowledge of their mechanical properties will enhance our understanding of limb biomechanics. Muscle contractile properties derived from architectural-based algorithms may overestimate real forces and underestimate shortening capacity because of simplistic assumptions regarding muscle architecture. Therefore, passive and active (=total - passive) force-length properties of the SDF and DDF muscles were measured directly in vivo. Muscles from the right forelimbs of four Thoroughbred horses were evaluated during general anesthesia. Limbs were fixed to an external frame with the muscle attached to a linear actuator and load cell. Each muscle was stretched from an unloaded state to a range of prefixed lengths, then stimulated while held at that length. The total force did not exceed 4000 N, the limit for the clamping device. The SDF and DDF muscles produced 716+/-192 and 1577+/-203 N maximum active isometric force (F(max)), had ascending force-length ranges (R(asc)) of 5.1+/-0.2 and 9.1+/-0.4 cm, and had passive stiffnesses of 1186+/-104 and 1132+/-51 N/cm, respectively. The values measured for F(max) were much smaller than predicted based on conservative estimates of muscle specific tension and muscle physiological cross-sectional area. R(asc) were much larger than predicted based on muscle fiber length estimates. These data suggest that accurate prediction of the active mechanical behavior of architecturally complex muscles such as the equine DDF and SDF requires more sophisticated algorithms.  相似文献   

12.
1. Models are presented for (a) HK ATPase acting in the presence of K and Cl conductances; (b) a pH regulatory system where Na/H exchange is regulated directly by second messenger and the anion exchanger is activated secondarily to the rise in cell pH; (c) vesicle fusion and K and Cl conductances activation in the gastric parietal cell. 2. It is suggested that H transport involves protonation and deprotonation of histidine groups as well as the motion of these groups relative to the membrane barrier. 3. The HK ATPase would have a voltage generating and voltage sensitive step in the forward direction. 4. Given net electroneutrality the K transport reaction would also be charge translocating and voltage sensitive.  相似文献   

13.
14.
Parkinson's disease is a neurodegenerative disorder associated with cell loss from the substantia nigra pars compacta (SNc). The dopaminergic cells of the SNc project to the striatum where the loss of dopaminergic tone is thought to be the main cause of Parkinsonism symptoms. Animal models have shown that striatal tissue content of dopamine declines proportionally to cell death in the SNc but the extracellular concentration of dopamine (EDA) in the striatum remains near normal until more than 85% of SNc neurons have died. We investigate various explanations for the remarkable homeostasis of EDA with a mathematical model that has recently been constructed for dopamine synthesis, release, and reuptake, which includes the effects of the autoreceptors. We provide evidence and explanations for the passive stabilization hypothesis and show that the autoreceptors enhance stabilization of EDA only when fewer than 25% of the SNc cells remain.  相似文献   

15.
16.
Passive deformations and active motions of leukocytes   总被引:4,自引:0,他引:4  
The purpose of this paper is to review the development of continuum mechanics models of single leukocytes in both passive deformations and active motions and to indicate some future directions. Models of passive deformations describe the overall rheological behavior of single leukocytes under externally applied forces and predict the average mechanical properties from experimental data. Various "apparent" viscoelastic coefficients are obtained depending on the models assumed and the types of test used. Models of spontaneous motions postulate active driving mechanisms which must be derived internally from the cell itself and probably have different bases for different kind of motions. For pseudopod protrusion on leukocytes, energy transduction from chemical potential to mechanical work associated with actin polymerization at the tip of the projection is assumed to supply the motive power. For pseudopod retraction, active contraction due to actin-myosin interaction is assumed to be the driving force. The feasibility of the hypotheses are tested via numerical examples and comparison of the theoretical results with experimental measurements.  相似文献   

17.
Strong mechanical forces can, obviously, disrupt cell–cell and cell–matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin–integrin interaction and integrin–ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin–ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin–ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force.  相似文献   

18.
Summary In chick embryos the best preservation of glycogen by conventional fixation methods was obtained withRossman's fixative. Although quenching methods give even better results, they are unsuitable for large pieces of tissues such as whole embryos. For this type of material a technique of intraventricular perfusion withRossman's fixative was devised. This method gave excellent preservation of glycogen and good cytological detail; most important of all, it made it possible to study the distribution of glycogen throughout a whole embryo in serial sections.
Zusammenfassung Die Glykogenerhaltung in Hühnerembryonen wurde durch die üblichen Fixierungsmethoden mittelsRossmans Flüssigkeit erreicht. Obgleich man mit Kaltfixierung (quenching) noch bessere Resultate erhält, ist diese Methode für große Gewebsstücke (z. B. ganze Embryonen) unpassend. Für solches Material haben wir eine intra-ventrikuläre Perfusionstechnik unter Anwendung vonRossmans Gemisch entwickelt, welche sich ausgezeichnet für die Glykogenerhaltung eignet und zytologische Details gut zum Vorschein bringt. Am wichtigsten jedoch erachten wir, daß man auf diese Weise die wahre Glykogenverbreitung in ganzen Embryonen an Hand von Serienschnitten beurteilen kann.


With 4 Figures in the Text  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号