首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In dogs with the electrodes implanted in the hippocampus, amygdala, septum and hypothalamus an instrumental alimentary conditioned reflex (CR) was elaborated to electrostimulation of the hippocampus. Intralimbic evoked potentials (EPs) were studied during the elaboration and extinction of this reflex and during stimulations of limbic structures conducted with the purpose of CR generalization checking. Late EP components in the lateral hypothalamus and central nucleus of the amygdala changed during CR elaboration and extinction and in the hippocampus during amygdala testing. In both cases the amplitude of trace positivity and of slow negative wave was less, when during stimulation of the structure an instrumental movement was initiated than at its absence.  相似文献   

2.
We studied the peculiarities of the amplitude/time parameters of evoked EEG potentials (EPs) and event-related potentials (ERPs) in 10- to 11-year-old children characterized by low and high anxiety levels. The latter levels were estimated using the scale of the manifest anxiety test of Prikhozhan and projective techniques (“House–Tree–Person,” HTP, and the Lüscher color test). For children with a high anxiety level, the amplitudes of the following EP components and ERPs were lower than those in low-anxiety children of the same age: P1 (predominantly in the occipital region of the left hemisphere), P2 (in the right occipital region), and Р300 wave (in different loci of both hemispheres). In high-anxiety children, we also more frequently observed increased amplitudes of the N2 component in the left parietal and right occipital regions. High-anxiety individuals were characterized by longer latencies of component P1 (mostly in the right frontal and left central regions) and, at the same time, shorter latencies of component N1 (in the parietal and occipital regions of the left hemisphere and also in the right temporal region). Thus, we found that the amplitude/time characteristics of a few EP components and ERPs in children with high anxiety levels differ statistically significantly from the parameters of corresponding EPs/ERPs in individuals of the same age but with low anxiety levels.  相似文献   

3.
The synchronism and latency of auditory evoked potentials (EP) recorded in symmetric points of the frontal cortex and lateral hypothalamus of cats were measured at different stages of instrumental food conditioning and after the urgent transition to 30% reinforcement. Correlation coefficients between EPs in the cortex and hypothalamus were high (with left-side dominance) at the beginning of the experiments, when food motivation was high, and during the whole experiments in cases of high-probability of conditioned performance. Analysis of early positive P55-80 EP component showed that at all conditioning stages the peak latency of this component was shorter in the left cortical areas than in symmetrical points, whereas in the hypothalamus the shorter latency at the left side was observed at the stage of unstable conditioned reflex, and at the stage of stable reflex the latency of the studied component was shorter at the right side. During transition to 30% reinforcement, the latency was also shorter in the right hypothalamus. It is suggested that the high left-side correlation between the hypothalamus and cortex was associated with motivational and motor component of behavior rather than reflected the emotional stress induced by transition to another stereotype of food reinforcement (30%).  相似文献   

4.
We measured characteristics of evoked potentials, EPs, developing after presentation of significant tonal acoustic stimuli in subjects systematically engaged in music training (n = 7) and those having no corresponding experience (n = 10). The peak latencies of the P3 component in the left hemisphere of musicians were significantly shorter than those in non-musicians (on average, 279.9 and 310.2 msec, respectively). Musicians demonstrated no interhemisphere differences of the latencies of components N2, P3, and N3, while a trend toward asymmetry was obvious in non-musicians (the above components were generated somewhat later in the left hemisphere). The amplitudes of EP components demonstrated no significant intergroup differences, but the amplitude of the P3 wave was higher in the left hemisphere of non-musicians than that in the right hemisphere. Possible neurophysiological correlates of the observed specificity of EPs in the examined groups are discussed.  相似文献   

5.
Healthy subjects (n = 88) were asked to passively visualize positive and passive emotiogenic visual stimuli and also stimuli with a neutral emotional content. Images of the International Affective Picture System (IAPS) were used. Amplitude/time characteristics of the components of evoked EEG potentials (EPs), P1, N1, P2, N2, and P3 and topographic distribution of the latter components were analyzed. The latencies, amplitudes, and topography of the EP waves induced by presentation of positive and negative stimuli were found to be different from the respective values for the EPs induced by neutral stimuli. The level and pattern of these differences typical of different EP components were dissimilar and depended on the sign of the emotions. Specificities related to the valency of an identified stimulus were observed within nearly all stages of processing of visual signals, for the negative stimuli, beginning from an early stage of sensory analysis corresponding to the development of wave Р1. The latencies of components Р1 in the case of presentation of emotiogenic negative stimuli and those of components N1, N2, and Р3 in the case of presentation of the stimuli of both valencies were shorter than the latencies observed at neutral stimuli. The amplitude of component N2 at perception of positive stimuli was, on average, lower, while the Р3 amplitude at perception of all emotiogenic stimuli was higher than in the case of presentation of neutral stimuli. The time dynamics of topographic peculiarities of processing of emotiogenic information were complicated. Activation of the left hemisphere was observed during the earliest stages of perception, while the right hemisphere was activated within the intermediate stages. Generalized activation of the cortex after the action of negative signals and dominance of the left hemisphere under conditions of presentation of positive stimuli were observed only within the final stages. As is supposed, emotiogenic stimuli possess a greater biological significance than neutral ones, and this is why the former attract visual attention first; they more intensely activate the respective cortical zones, and the corresponding visual information is processed more rapidly. The observed effects were more clearly expressed in the case of action of negative stimuli; these effects involved more extensive cortical zones. These facts are indicative of the higher intensity of activating influences of negative emotiogenic stimuli on neutral systems of the higher CNS structures.  相似文献   

6.
In experimental practice, odors are commonly applied to only one nostril for recordings of olfactory event-related potentials (OERPs), but the lateralization aspect of the OERP response is unclear regarding both stimulated nostril and cortical topography. The purpose of the present study was to investigate whether stimulated-nostril side affects OERP amplitudes and latencies and whether these potentials indicate lateralization of brain response in healthy, right-handed, young adults. OERPs were recorded from nine electrode sites in response to monorhinal stimulation with amyl acetate in 28 participants. The results showed a general increase in amplitude from frontal to parietal electrode sites (in particular for N1/P3) and generally larger amplitudes on the left hemisphere and midline than on the right hemisphere. There was no main effect of stimulated-nostril side on amplitude. Interactions indicated that N1/P2 amplitude was larger for left- than right-nostril stimulation and larger on the left hemisphere and midline than on the right hemisphere in left-nostril stimulation. No main effect or interactions of stimulated-nostril side over latencies were found and no effects on latencies of sagittal or coronal sites. These findings suggest a general parietal, left-hemisphere predominance in response amplitude to odorous stimulation and imply that either the left or the right nostril may be sufficient for accurate assessment of OERP latency in right-handed, young adults.  相似文献   

7.
The anterior faucial pillar, which is innervated by the glossopharyngeal nerve, is thought to be important in eliciting the pharyngeal swallow in awake humans. Glossopharyngeal evoked potentials (GPEP), elicited by mechanically stimulating this structure, were recorded from 30 normal adults using standard averaging techniques and a recording montage of 16 scalp electrodes. Ten of the subjects experienced a desire to swallow in response to stimulation. Repeatable responses were recorded from all 30 subjects. The GPEPs recorded from the posterior scalp were W-shaped and consisted of P1, N1, P2, N2 and P3 peaks. Mean latencies of P1, N1 and P2 were 11, 16 and 22 msec, respectively, for both left and right pillar stimulation. In contrast, latencies of N2 and P3 varied significantly between left and right pillar stimulation. Mean latencies of N2 and P3 were 27 and 34 msec for left, and 29 and 35 msec for right pillar stimulation. Topographical maps acquired at peak latencies for P1, N1 and P2 revealed consistent asymmetrical voltage distributions between the two hemispheres; the largest responses were recorded from the hemisphere ipsilateral to the side of stimulation. The scalp topography of N2 and P3 varied between male and female subjects as well as between left and right pillar stimulation. These findings support the hypothesis that mechanical stimulation to the anterior faucial pillar alone can elicit repeatable responses from the central nervous system. The integration of this subcortical/cortical activity with that of the medullary swallowing center may play an important role in eliciting the pharyngeal swallow.  相似文献   

8.
Recognition of joy, anger, and fear by face expression in humans   总被引:1,自引:0,他引:1  
Behavioral and neurophysiological characteristics of a visual recognition of emotions of joy, anger, and fear were studied in 9 young healthy men and 10 women. It was shown that these emotions were identified by subjects with different rate and accuracy; significant gender differences in recognition of anger and fear were found. Recording of visual evoked potentials (VEP) from the occipital (O1/2), medial temporal (T3/4), inferior temporal (T5/6), and frontal (F3/4) areas revealed differences (related with the type of emotion) in the latencies of P150, N180, P250, and N350 waves and in the amplitude of VEP components with the latencies longer than 250 ms. These differences were maximally expressed in T3/4 derivation. The subjects could be divided in two groups. The first group was characterized by increased VEP latencies and higher amplitudes of VEP components later than 250 ms in response to anger (in comparison with other types of emotions). These phenomena were observed in all the derivations but were most pronounced in T3/4. In the second group, only late P250 and N350 components had shorter latencies during recognition of fear. VEP amplitude variations related with the type of emotions were insignificant and were recorded in the occipital and frontal areas. The two groups of subjects also differed in psychoemotional personality characteristics. It is suggested that primary recognition of facial expression takes place in the temporal cortical areas. A possible correlation of electrophysiological indices of emotion recognition with personality traits is discussed.  相似文献   

9.
Fourteen adult patients undergoing open heart surgery under induced hypothermia had median nerve, short-latency somatosensory evoked potentials (SSEPs) recorded during cooling (from 36°C to 19°C) and subsequent rewarming. Similar data on another group of patients who had brain-stem auditory evoked potentials (BAEPs) were also analyzed. Hypothermia produced increased latencies of the major SSEP and BAEP components and the latencies returned to normal with subsequent warming. The temperature-latency relationship during the cooling phase was significantly different from that during the warming phase. For SSEP components the temperature-latency relationship was linear during cooling and curvilinear during warming, whereas for BAEP it was curvilinear both during cooling and warming. Furthermore, the regression curves were different during the two phases of temperature manipulation, particularly for temperatures below 30°C both for SSEP and BAEP components. At the onset of warming there was an initial exaggerated warming response on the evoked potential (EP) latencies and amplitude of the EP components. The temperature-latency regression curves were uniformly less steep during the warming phase compared to those during cooling. These findings suggest the existence of hysteresis in the relationship between temperature and EP latencies. The latencies at a given temperature below 30°C depend on whether that temperature is reached during cooling or during warming.  相似文献   

10.
11.
The effect of novocain on evoked potentials (EP) recorded from the ventrobasal complex (VBC) of rats thalamus has been studied during a single pulse stimulation of the contralateral hind paw immobilized with curare. It has been established that significant sinchronized decrease of amplitudes of all the three early components of EP has been observed during the novocain administration in the reticular thalamic nucleus, lateral amygdaloid area and septum. During the blocking of the anterior and posterior hypothalamus the amplitude of the second negative component of EP in VBC decreases, while during the blocking of the dorsal hypothalamus an increase of the amplitudes of all the three early components of EP is mainly observed.  相似文献   

12.
The analysis of steadily recorded components of evoked potentials (EP) in different areas of cerebral cortex during tachistoscopic presentation of a homogeneous square, checker-board pattern and schematic drawings of human faces (face-pattern) of 6 degrees size was performed in children aged from 6,5 to 7 years. During contour detection, characterized by significant EP differences between responses to a checker-board pattern and a homogeneous square, the most pronounced changes were observed in the visual projection area of the cortex. Reaction to a complex visual stimulus, characterized by differences of EP to fase and checker-board patterns, had maximal manifestation in the temporo-parieto-occipital area. The changes observed during both operations were noted for EP components appearing up to 250 msec following stimulation. It is suggested that they are connected with the activity of cortical receptive fields. The data obtained are discussed on the basis of hypothesis of a difference between cortical mechanisms of single operations involved in visual perception.  相似文献   

13.
14.
In an automatized experiment, with a computer on line, amplitude-temporal parameters of evoked potentials (EPs) to purposive and non-purposive stimuli (digits), were analyzed in normal and mental retarded children. At unilateral stimuli presentation to the left or right visual half-fields EPs were recorded simultaneously in projection, TPO, parietal and central areas of the left and right hemispheres. It has been shown that in normal children, differential involvement of projection and associative structures in the analysis of sensory information takes place in both hemispheres. The amplitudes of most EP components in the range of 100-400 ms to the purposive stimuli are higher than to the non-purposive ones. Considerable similarity of EPs developing in response to ipsi- and contralateral stimulations of visual fields ("direct" and "transmitted" EP) is observed. In mental retarded children significant changes are revealed in intra- and interhemisphere organization of the process of perception of purposive and non-purposive stimuli. In the right hemisphere structures there are no differential EP reactions to the two types of stimuli. Significant, in comparison with the norm, prolongation of the latencies of most EP components is noted, especially in the structures of the left hemisphere, to the purposive stimuli. In the process of perception, changes are seen of the integration of functions of both hemispheres. The totality of disturbances of systemic brain organization at perceptive activity in mental retarded children may reflect neurophysiological mechanisms of mental deficiency.  相似文献   

15.
Somatosensory evoked potentials by posterior tibial nerve stimulation at the ankle were performed in 74 healthy volunteers (36 females and 38 males) aged 14-76 years. Cortical potentials were obtained in all subjects and spinal potentials (N22) in 71 subjects. All parameters were related to subject's age, height and sex. Sex influenced only P40-N50 amplitude, which was greater in females. All latencies of spinal and cortical components increased in a similar manner with subject's height (about 0.16-0.18 ms per cm), whereas the N22-P40 interpeak latency was independent from height, but related to T12-Cz distance. Absolute latencies of the spinal and of most cortical components, but not interpeak latencies, increased with subject's age (about 0.06-0.09 ms per year). The parameters to compute normative data (according to univariate or bivariate regression models) are furnished. Limits of right-left differences are reported.  相似文献   

16.
A correlation between some characteristics of the visual evoked potentials and individual personality traits (by the Kettell scale) was revealed in 40 healthy subjects when they recognized facial expressions of anger and fear. As compared to emotionally stable subjects, emotionally unstable subjects had shorter latencies of evoked potentials and suppressed late negativity in the occipital and temporal areas. In contrast, amplitude of these waves in the frontal areas was increased. In emotionally stable group of subjects differences in the evoked potentials related to emotional expressions were evident throughout the whole signal processing beginning from the early sensory stage (P1 wave). In emotionally unstable group differences in the evoked potentials related to recognized emotional expressions developed later. Sensitivity of the evoked potentials to emotional salience of faces was also more pronounced in the emotionally stable group. The involvement of the frontal cortex, amygdala, and the anterior cingulate cortex in the development of individual features of recognition of facial expressions of anger and fear is discussed.  相似文献   

17.
Using the evoked potentials (EP) studies have been made on functional connections of different fields (CA1, CA3) of the dorsal hippocamp with phylogenetically different parts of the hypothalamus in rabbits. It was shown that during stimulation of both the field CA1 and the field CA3 of the hippocamp, the EP are widely present in nuclear structures of the posterior hypothalamus (supramammilary area, the posterior hypothalamic area, mammilary bodies). In the anterior hypothalamus (area preoptic medialis), the EP were recorded only during stimulation of the field CA1 in the dorsal hippocamp.  相似文献   

18.
The character of impulsation of single neurons in the lateral hypothalamic and amygdalar central nucleus of rabbits recorded in bilateral derivations during quiet wakefulness, after 24-h food deprivation, and after satiation was studied by plotting autocorrelation histograms and by counting the mean frequency of discharges. During the transition from hunger to satiation, the character of impulsation of neurons in hypothalamus and amygdala changed in different ways: (1) a greater number of hypothalamic than amygdalar neurons changed their mean discharge frequency (85 versus 56%, respectively); (2) in hunger, the number of hypothalamic neurons with delta-frequency oscillations decreased as compared to quiet wakefulness and satiation, and in the amyglala the number of neurons with beta2-frequency oscillations increased; (3) in hunger, the number of hypothalamic neurons with bursting and periodic discharges decreased and the number of amygdalar neurons with equiprobabilistic discharges increased. During state alternation (according to the autocorrelation histograms) the strongest changes in the character of neuronal discharges took place in the left hypothalamus and left amygdala. The maximum differences in neuronal impulsation between the left and right hypothalamus were observed in the state of hunger and between the left and right amygdala, after satiation.  相似文献   

19.
Photically evoked potentials were recorded from the visual cortex (VC) as well as CA 1/2- and CA 4/Fascia dentata-region of the dorsal hippocampus in alert resting rabbits. Analysing the whole time-course of the individual hippocampal EP attention was focused on components corresponding in time to the late negative complex of the cortical EP. Enhancement of such components was seen following habituation to repeated flashes. These changes occurred concerning components in the CA 4/FD-record with shorter latency. The duration and peak latency, however, was longer in CA 4/FD than in the other records. During stimulation of the medial septal nucleus a diminution of late EP-components was seen in the visual cortex and less pronounced in the hippocampus. The time-course of the changes was almost the same in VC and CA 4/FD, whereas in CA 1/2 later components were affected. RF-stimulation caused very similar changes, while those in hippocampal EP's were extended up to later components. Whereas the time range of changes in the hippocampal EP's to all influences under investigation was almost the same, in the VC by RF-stimulation in contrast to habituation components with shorter latencies were affected. In this way it is supposed that for the VC different processes are affected by the three influences, while this could not be established for the hippocampus.  相似文献   

20.
Cortical somatosensory evoked potentials to posterior tibial nerve stimulation were obtained in 29 normal controls varying in age and body height. In obtaining these potentials we varied recording derivations and frequency settings. Our recordings demonstrated the following points:
  • 1.(1) N20 (dorsal cord potential) and the early cortical components (P2, N2) were the only potentials that were consistently recorded. All other subcortical components (N18, N24, P27, N30) were of relatively low amplitude and not infrequently absent even in normals.
  • 2.(2) All absolute latencies other than N2 were correlated with body height. However, interpeak latency differences were independent of body height.
  • 3.(3) Below the age of 20, subcortical but not cortical peak latencies correlated with age, but this appeared to be due to changes in body height in this age group.
  • 4.(4) Absolute amplitudes and amplitude ratios (left/right and uni/bilateral) showed marked interindividual variability and have very limited value in defining abnormality.
  • 5.(5) The use of restricted filter windows facilitated the selective recording of postsynaptic potentials (30–250 Hz) and action potentials (150–1500 Hz).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号