首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
小麦品种氮利用效率的评价指标及其氮营养特性研究   总被引:24,自引:3,他引:24  
选用40个不同小麦基因型在2个不同生态区进行田间试验,系统地分析了不同N利用效率指标的基因型与环境差异及其与N营养特性的关系.结果表明,N收获指数在基因型间的变异相对较小。其余指标受品种影响较大.N吸收效率、氮流效率受环境影响较小,其余指标受环境影响较大.所有指标均受基因型和环境互作的显著影响.氮流效率与N吸收效率、植株N生产力和土壤N生产力极显著相关,综合反映了植株干物质生产和N利用状况,可作为一个有效的N利用效率评价指标.指出提高开花后,N同化量和转运量有利于提高氮流效率.  相似文献   

3.
4.
5.
A glasshouse experiment was conducted to study the effect of Ni on the growth and nutrients concentration in wheat (Triticum aestivum Cv. WH 291) in the presence and absence of applied N as urea. Responses to N application were observed up to 120 g N g–1 soil. No response to Ni was observed in the dry matter yield of wheat tops (leaves + stem) in the absence of applied N while in the presence of applied N, significant yield increases were obtained at 12.5g Ni g–1 soil. Nickel was not toxic to wheat up to 50g Ni g–1 soil in the presence of 120g N g–1 soil. Nitrogen and Ni concentration in wheat tops and roots increased with increasing levels of applied N and Ni, respectively. Applied Ni had an antagonistic effect on N concentration. Similarly, N reduced the Ni concentration in the wheat tissues. Positive growth responses to Ni were associated with 22 and 15g Ni g–1 in wheat tops, in the presence of applied N at 60 and 120g N g–1 soil, while Ni toxicity was associated with 63, 92.5 and 112.5g Ni g–1 in wheat tops, in the absence and presence of applied N at 60 and 120g N g–1 soil, respectively.  相似文献   

6.
7.
氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响   总被引:3,自引:0,他引:3  
连续2年在西南冬麦区的重庆、仁寿、广汉、西昌4个地点,开展3种施氮水平(每公顷纯氮0、120、180 kg,简写为N0、N120、N180)和3种氮肥分配模式(NA:底肥100%;NB:底肥70%+苗肥30%;NC:底肥60%+拔节肥40%)的田间试验,监测小麦花后冠层叶片SPAD值、群体光合速率(CAP)、光能利用等生理参数和籽粒产量,计算氮素利用效率、光能利用率等.结果表明: 随施氮水平增加,小麦上三叶SPAD值、CAP、光合有效辐射(PAR)截获率和产量均呈增加趋势,而氮肥农学利用效率、生产效率、吸收效率和利用效率呈降低趋势.氮肥后移的增效作用因施氮水平而异,SPAD于N180增效明显,而CAP于N120增效明显,不同氮肥管理模式的光能利用率因地点而异.氮肥后移能明显提高小麦氮肥农学效率、生产效率、吸收效率和氮素表观回收率,但氮肥利用效率则略有减少.氮肥后移效果NC总体优于NB处理.不同地点比较,广汉的SPAD值、CAP、PAR截获率、氮肥利用参数较高,其产量也相应最高;西昌的产量、SPAD值及氮素利用效率较高,但其光能利用率和CAP较低;重庆和仁寿的SPAD值、光能利用率及氮素利用效率均较低,其产量也最低.小麦生物产量与各地点的籽粒产量、CAP、SPAD值和PAR累积截获量均呈显著或极显著的正相关关系.表明不同生态区域增施氮肥都能促进小麦增产,氮肥后移可进一步优化产量结构、改善氮肥和光能利用效率,但存在年份和地点差异,各地需要制定有针对性的氮肥管理模式.  相似文献   

8.
Nitrogen fertilization strategies were widely adopted to enhance grain production and improve nitrogen utilization in rice all over the world. For fertilization timing strategy, ear fertilization was usually employed in recent years. For fertilization amount strategy, nitrogen fertilization would continually increase to meet the demands of increasing people for food. However, under heavy ear fertilization as well as great nitrogen amount (NA), physiological N-use efficiency (PE, defined as grain production per unit nitrogen uptake by plants) decreased. Under three NA and two ratios of fertilization given during ear development period to total NA (ear fertilization distribution ratio, EFDR), net photosynthetic rate (Pn), Pn to nitrogen content per unit area (photosynthetic N-use efficiency, Pn/N), nitrogen accumulation in plant tissues and PE of three rice (Oryza sativaL.) genotypes, Jinyou 253, Liangyoupeijiu and Baguixiang were screened in the first and second seasons in 2002 so as to understand the fluctuation patterns of Pn/N and nitrogen distribution in leaf blades under great NA & EFDR and relationship with PE in rice. Results showed that under greater NA & EFDR, Pn in flag leaves at heading and plant nitrogen accumulation at maturity always increased and PE & Pn/N always decreased in spite of increased grain production. Rice distributed more nitrogen in leaf blade under greater NA and EFDR. PE indicated significantly (P<0.05) positive relationship with Pn/N and negative relationship with nitrogen distribution ratio in leaf blades at heading and maturity, and no association with Pn in two growing seasons. Results suggested that low PE in rice under great NA and heavy ear fertilization is associated to more nitrogen distribution in leaf blades and decreases in photosynthetic efficiency.  相似文献   

9.
10.
11.
12.
13.
14.
The effect of secondary reactions on DHAP-dependent aldolase stereoselective synthesis yields is reported. The fuculose-1-phosphate aldolase catalyzed synthesis between DHAP and Cbz-S-alaninal has been chosen as case study. It has been demonstrated that DHAP is not only chemically degraded in the reaction medium, but also enzymatically. The last reaction has been shown to take place when type II aldolases are used as biocatalysts. In order to minimize the effect of non-desired reactions, temperature reduction has been shown to be favorable, and operation at 4 degrees C has been chosen as appropriate. On the other hand, the fed-batch addition of DHAP also increased the synthesis yields and, combined with low temperature, led to almost quantitative conversion.  相似文献   

15.
16.
过量施用氮肥导致氮肥利用率降低,环境风险加大.合理降低施氮量、优化氮肥运筹对于小麦高产高效栽培具有重要意义.本研究采用大田试验,以常规施氮方式(240 kg N·hm-2, 基肥∶拔节肥∶孕穗肥=5∶3∶2)为对照,研究了不同施氮量(240、180、150 kg N·hm-2,分别用N240、N180、N150表示)及基苗肥施用时期(基施、4叶期施、6叶期施,分别用L0、L4、L6表示)对小麦产量和氮素利用效率的影响.结果表明: 小麦籽粒产量随施氮量的降低而降低,但N180与N240处理相比无显著差异,而N150处理显著降低;氮肥农学效率和吸收效率均以N180处理最高.不同施肥时期间,L4处理的籽粒产量和氮肥利用率最高.N180四叶施肥(N180L4)处理的产量与对照无显著差异,但氮肥利用率显著提高.N180L4处理叶面积指数、旗叶光合速率、叶片氮含量、旗叶硝酸还原酶和谷氨酰胺合成酶活性、拔节后干物质和氮素积累量较对照未显著降低.适量降低氮肥用量配合基肥后移能够提高生育后期光合生产能力和氮素吸收同化能力,在保持高产的条件下实现氮素利用效率的同步提高.  相似文献   

17.
18.
19.
硝化抑制剂对小麦产量和氮素吸收利用的影响   总被引:4,自引:0,他引:4  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号