首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Members of the prokaryotic genus Streptomyces produce over 60% of all known antibiotics and a wide range of industrial enzymes. A leading theme in microbiology is which signals are received and transmitted by these organisms to trigger the onset of morphological differentiation and antibiotic production. The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule in streptomycetes, and A-factor mutants are blocked in development and antibiotic production. In this study we showed that heterologous expression of the 324-amino acid secreted regulatory protein Factor C resulted in restoration of development and enhanced antibiotic production of an A-factor-deficient bald mutant of Streptomyces griseus, although the parental strain lacks an facC gene. Proteome analysis showed that in the facC transformant the production of several secreted proteins that belong to the A-factor regulon was restored. HPLC-MS/MS analysis indicated that this was due to restoration of A-factor production to wild-type levels in the transformant. This indicates a connection between two highly divergent types of signaling molecules and possible interplay between their regulatory networks.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号