首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. A. De Greef  H. Fredericq 《Planta》1972,104(3):272-274
Summary Far-red light was demonstrated to accelerate senescence in mature, green tissue of intact thalli of Marchantia polymorpha. The red/far-red reversibility of this phenomenon proves the involvement of phytochrome. As a daily exposure to 5 min red light is sufficient to prevent aging of the tissue, photosynthesis does not play a specific role in this response.  相似文献   

2.
Light controls the formation of plastid ultrastructure and the synthesis of chlorophyll, plastid membrane constituents and Calvin cycle enzymes. A respective light-mediated regulation of the genetic apparatus in the nucleus and the plastid compartment has been reported. Three photoreactions are involved in the regulation: (1) the protochlorophyll (ide) leads to chlorophyll (ide) a photoconversion, (2) the formation of physiologically active phytochrome and (3) light absorption by a blue light receptor (cryptochrome). The chloroplast formation in higer plants is chiefly controlled by active phytochrome, while in lower plants cryptochrome is the prevailing regulatory factor.  相似文献   

3.
4.
5.
6.
Summary The capacity of a particulate pea (Pisum sativum L.) leaf chloroplast system for light-modulation of enzyme activity is diminished by brief exposure to sodium sulfite and, when intact seedlings are exposed to atmosphric SO2, the same system is inactivated. The destructive effect of this pollutant on green plants may therefore be due to disruption of the mechanism for control of carbon dioxide fixation.  相似文献   

7.
8.
Chloroplast movements are among the mechanisms allowing plants to cope with changes in their environment. Chloroplasts accumulate at illuminated cell areas under weak light while they avoid areas exposed to strong light. These directional responses may be controlled by blue and/or red light, depending on the plant group. In terrestrial angiosperms only the blue light perceived by phototropins is active. The last decade has seen a rapid development of studies on the mechanism of directional chloroplast movements, which started with an identification of the photoreceptors. A forward genetic approach has been used to identify the components which control chloroplast movements. This review summarizes the current state of research into the signalling pathways which lead to chloroplast responses. First, the molecular properties of phototropins are presented, followed by a characterization both of proteins which are active downstream of phototropins and of secondary messengers. Finally, cross-talk between light signalling involved in chloroplast movements and other signalling pathways is discussed.  相似文献   

9.
10.
11.
The effect of light on the pigmentation of various strains belonging to the genus Streptomyces was investigated. It was revealed that six species of streptomycetes, S. massasporeus, S. phaeopurpureus, S. chibaensis, S. salmonicida, S. fluvissimus and S. longispororuber, were photochromogenic, i.e., these strains can be photoinduced to synthesize pigments. On the basis of these results, pigmentation in Streptomyces is discussed.  相似文献   

12.
13.
Alternative oxidase (AOX), the unique terminal oxidase in plant mitochondria, catalyzes the energy-wasteful cyanide (CN)-resistant respiration. Although it has been suggested that AOX might prevent chloroplast over-reduction through the efficient dissipation of excess reducing equivalents, direct evidence for this in the physiological context has been lacking. In this study, we examined the mitochondrial respiratory properties, especially AOX, connected to the accumulation of reducing equivalents in the chloroplasts and the activities of enzymes needed to transport the reducing equivalents. We used Arabidopsis thaliana mutants defective in cyclic electron flow around PSI, in which the reducing equivalents accumulate in the chloroplast stroma due to an unbalanced ATP/NADPH production ratio. These mutants showed higher activities of the enzymes needed to transport the reducing equivalents even in low-light growth conditions. The amounts of AOX protein and CN-resistant respiration in the mutants were also higher than those in the wild type. After high-light treatment, AOX, even in the wild type, was preferentially up-regulated concomitant with the accumulation of reducing equivalents in the chloroplasts and an increase in the activities of enzymes needed to transport reducing equivalents. These results indicate that AOX can dissipate the excess reducing equivalents, which are transported from the chloroplasts, and serve in efficient photosynthesis.  相似文献   

14.
Khanna-Chopra R 《Protoplasma》2012,249(3):469-481
Leaf senescence is a genetically programmed decline in various cellular processes including photosynthesis and involves the hydrolysis of macromolecules such as proteins, lipids, etc. It is governed by the developmental age and is induced or enhanced by environmental stresses such as drought, heat, salinity and others. Internal factors such as reproductive structures also influence the rate of leaf senescence. Reactive oxygen species (ROS) generation is one of the earliest responses of plant cells under abiotic stresses and senescence. Chloroplasts are the main targets of ROS-linked damage during various environmental stresses and natural senescence as ROS detoxification systems decline with age. Plants adapt to environmental stresses through the process of acclimation, which involves less ROS production coupled with an efficient antioxidant defence. Chloroplasts are a major site of protein degradation, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is rapidly and selectively degraded during senescence and stress. The process of protein degradation is initiated by ROS and involves the action of proteolytic enzymes such as cysteine and serine proteases. The mechanism of Rubisco degradation still remains to be elucidated. The molecular understanding of leaf senescence was achieved through the characterization of senescence-associated genes and various senescence mutants of Arabidopsis, which is a suitable model plant showing monocarpic senescence. The regulation of senescence involves many regulatory elements composed of positive and negative elements to fine-tune the initiation and progression of senescence. This review gives an overview on chloroplast protein degradation during leaf senescence and abiotic stresses and also highlights the role of ROS management in both processes.  相似文献   

15.
The effect of high light on the acceptor side of photosystem II of chloroplasts and core particles of spinach was studied. BothV max and apparentK m for DCIP were altered in photoinhibited photosystem II core particles. The double reciprocal plot analysis as a function of actinic light showed increased slope in chloroplasts photoinhibited in the presence of DCMU. Exposure of chloroplasts to high light in the presence of DCMU did not protect the chloroplast against high light induced decrease in Fm, level. Further the high light stress induced decrease inF m level was not restored by the addition of DCMU. These results suggest that the high light stress induced damage to chloroplast involves alteration in the binding site forQ B on the DI protein on the acceptor side of photosystem II  相似文献   

16.
17.
The senescence of excised discs of primary leaves of Phaseolus vulgaris, L., var. Red Kidney was followed by measuring the net breakdown of protein and chlorophyll. The chemical growth regulators indoleacetic acid, 2,4-dichlorophenoxy-acetic acid, gibberellic acid, kinetin, and 6-benzylaminopurine were relatively ineffective in retarding senescence in this tissue. White light, on the other hand, was very effective in senescence retardation. The response to light did not have the characteristics of a low energy (phytochrome) response and was blocked by concentrations of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea which inhibited photosynthesis in the leaf discs. The light-induced retardation of senescence was concluded to be dependent on photosynthesis.  相似文献   

18.
An experimental analysis is presented concerning the effect on relative light absorption by the two photosystems caused by (a) a highly light scattering environment (the detour effect) and (b) light filtration across successive chloroplast layers (the light attenuation effect). Both suspensions of isolated chloroplasts and leaves were employed.It is concluded that within a single spinach leaf these phenomena are likely to lead to only rather small increases in relative photosystem I absorption and activity with respect to photosystem II and will thus not exert a significant effect on non cyclic electron transport. On the contrary when light is filtrated across successive vegetation layers (shade light) significant increases in the relative PSI absorption and activity may be encountered.It is determined that the detour effect in mature leaves from a variety of plants increases overall photosynthetically useful light absorption by 35–40%.Abbreviations FM maximal fluorescence - LHCP2 light-harvesting chlorophyl a/b protein complex II - QA-primary quinone acceptor of photosystem II  相似文献   

19.
The impact of light intensity on shade-induced leaf senescence   总被引:2,自引:0,他引:2  
Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.  相似文献   

20.
Aliphatic polyamines (PAs) are involved in the delay or prevention of plant senescence, but the molecular mechanism is not clarified. The hypothesis is put forward that one of the mechanisms by which PAs modulate leaf senescence and chlorophyll stabilisation could be due to their modification of chlorophyll-bound proteins, catalysed by transglutaminase (TGase, R-glutaminylpeptide-amine γ-glutamyltransferase; E.C. 2.3.2.13). The retardation of leaf senescence of Lactuca sativa L. by spermine (Spm) was examined during induced cell death using leaf discs, or during the normal developmental senescence of leaves. Over 3 days, in leaf discs, Spm caused a delay of chlorophyll (Chl) decay, an increase of endogenous TGase activity, and a three-fold increase in chlorophyll content when supplied together with exogenous TGase. Spm was conjugated, via TGase, mainly to 22–30 kDa proteins. Long-term experiments over 5 days showed a general decrease in all three parameters with or without Spm. When leaves remained on the plants, Spm-sprayed leaves showed an increase in free Spm 1 h after spraying, mainly in the young leaves, whereas over longer periods (15 days) there was an increase in perchloric acid-soluble and -insoluble Spm metabolites. In senescing leaves, Spm prevented degradation of chlorophyll b and some proteins, and increased TGase activity, producing more PA-protein conjugates. Spm was translocated to chloroplasts and bound mainly onto fractions enriched in PSII, but also those enriched in PSI, whose light-harvesting complexes (LHC) sub-fractions contained TGase. Spm was conjugated by TGase mainly to LHCII, more markedly in the light. Immunodetection of TGase revealed multiple proteins in young leaves, possibly representing different TGase isoforms when TGase activity was high, whereas in already senescent leaves, when its activity decreased, one high-molecular-mass band was found, possibly because of enzyme polymerisation. Spm thus protected senescing Lactuca leaves from the decay of their chloroplast photosystem complexes. The senescence-delaying effects of Spm could be mediated by TGase, as TGase was re-activated to the level in young leaves following Spm treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号