首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

2.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

3.
Isometric tension was recorded by force displacement transducers in ring segments of the inferior branch of the renal artery from newborn hooded seals (Cystophora cristata, n=6), harp seals (Phoca groenlandica, n=3) and domestic pigs (Sus scrofa f. domestica, n=5). Arterial segments were mounted in heated organ baths and exposed to graded concentrations of noradrenaline (NA) and adrenaline (A), alone or together with melatonin. The melatonin concentration in the bath was similar to the plasma concentration normally found in each experimental animal. Melatonin alone did not affect the tension in any of the species, but melatonin potentiated the contraction induced by NA in hooded and harp seal arteries to a maximum of about 25% above the resting, pre-stretch level. The selective melatonin receptor antagonist luzindole reduced this potentiation by 80%. Species-specific concentrations of melatonin did not potentiate the NA-effect in the domestic pig or the A-induced contraction in any of the species. The results indicate that melatonin specifically increases the NA-sensitivity of smooth muscles in renal arteries from newborn seals. It is presumed that similar effects may operate in foetal and maternal seals and may influence their circulation during maternal diving.  相似文献   

4.
Circadian rhythms in body temperature, locomotor activity, and the circadian changes of plasma and pineal melatonin content were investigated in B6D2F(1) mice synchronized by 12 h of light and 12 h of darkness. During 8 wk continuous recording, activity and temperature displayed a marked stable and reproducible circadian rhythm, with both peaks occurring near the middle of darkness. Both 24- and 12-h rhythmic components were also significantly detected. Mean plasma melatonin concentration rose steadily during the light span and reached a maximum (30.6 +/- 10.0 pg/ml) at 11 h after light onset (HALO), then gradually decreased after the onset of darkness to a nadir (4.7 +/- 0.4 pg/ml) at 20 HALO. Mean pineal content followed a pattern parallel to that of plasma concentration (peak at 11 HALO: 17.7 +/- 1.0 pg/gland; trough at 17 HALO: 4.7 +/- 1.0 pg/gland). In addition, a second sharp peak was observed at 21 HALO (20.2 +/- 3.5 pg/gland). Plasma and pineal contents displayed large and statistically significant circadian changes, with a composite rhythm of period (24 + 12 h). This mouse model has predominant production and secretion of melatonin during the day. This possibly contributes to a similar coupling between chronopharmacology mechanisms and the rest-activity cycle in these mice and in human subjects.  相似文献   

5.
The development of pineal function in northern elephant seals was examined in an attempt to understand the physiological basis for previously observed high daytime levels of melatonin in neonatal southern elephant seals. Pineal glands from four northern elephant seal pups, estimated age less than 1 week, weighed 3.0 ± 0.80 g, which was significantly less than that previously found in southern elephant seals (4.6 ± 0.35 g). Midday concentrations of plasma melatonin in pups averaged more than 3000 pmol/l in the first 5 days post-partum, but declined rapidly to less than 400pmol/l after day 9. Daytime melatonin levels in northern elephant seals tended to be lower than in southern elephant seals, although they were very high compared with other species. A circadian cycle of plasma melatonin concentration was observed in newborn northern elephant seals, with levels of 3000–5000 pmol/1 during the day, rising to more than 10,000 pmol/1 late in the dark phase. Soon after weaning at 4 weeks of age, daytime and night-time levels were in the range 60–100 pmol/1 and 100–400 pmol/1, respectively. When approximately 10 weeks old, most samples were in the range 100–400 pmol/1 with no discernible difference between day and night levels. The results do not support the hypothesis that the pineal gland is involved in thermogenesis in new-born southern elephant seals. Instead, the very active pineal gland may contribute to energy conservation, by lowering body temperature, particularly at night. As physical insulation is acquired by the deposition of blubber, the mechanism is not required and melatonin falls to adult levels.  相似文献   

6.
Summary The role of the hormone melatonin in the circadian system of pigeons (Columba livia) was investigated. Using an automatic infusion system, melatoni at physiological levels was delivered for 10 h each day to cannulated, pinealectomized (P-X) pigeons in constant darkness. These cyclic infusions of melatonin entrained feeding rhythms in P-X pigeons while vehicle infusions were ineffective entraining agents. When the retinae of P-X pigeons were removed (E-X), feeding rhythms were abolished in constant darkness. When cyclic melatonin infusions were delivered to these birds (E-X and P-X), feeding rhythmicity was restored whereas vehicle infusions alone did not restore rhythmicity. When melatonin infusions were terminated in E-X/P-X pigeons, feeding rhythms persisted for several days but eventually decayed. Blood melatonin levels were measured in both P-X and E-X/P-X birds infused cyclically with exogenous melatonin and were found to be within the physiological range both in level and pattern. These results strongly suggest that endogenous melatonin, released by the pineal gland and the retinae, regulates the timing of feeding rhythms by entraining other oscillators in the circadian system of the pigeon.Abbreviations P-X pinealectomized - E-X bilaterally enucleated - T period of infusion cycle - LD light: dark cycle - DD constant darkness  相似文献   

7.
In mammals, pineal gland is intimately concerned with the co-ordination of rhythm physiology. Biochemical characteristics of pineal gland in man and other mammals may provide strong, yet sometimes elusive support for the belief in functional individuality and probable importance of this tiny gland. In seasonal breeding animals, pineal gland function is very much dependent on the reproductive status. Therefore, the aim of this experiment is to note the circadian rhythmicity of different biochemical constituents of pineal gland during active and inactive phases of reproductive cycle of a seasonally breeding rodent, F. pennanti. In the present study, pineal biochemical constituents i.e. protein and cholesterol showed higher values during daytime (1400 h). The plasma melatonin level presented two peaks during active (April; at 1800 h and 0200 h) and inactive (December; at 1400 h and 0200 h) phases of reproductive cycle. The pineal protein, cholesterol and plasma melatonin values in term of basal and peak levels were higher during the reproductive inactive/pineal active phase. Therefore, pineal--also known to have antigonadotropic properties and cholesterol which appears conjugated with pineal serotonin, presented circadian rhythmicity along with the plasma level of melatonin. This rhythmicity noted in present study was dependent on the reproductive and pineal activity status, and might be regulated by the sex steroid receptor present on the pineal gland.  相似文献   

8.
Dynamics of rhythmic oscillations in the activity of arylalkylamine N-acetyltransferase (AA-NAT, the penultimate and key regulatory enzyme in melatonin biosynthesis) were examined in the retina and pineal gland of turkeys maintained for 7 days in the environment without daily light-dark (LD) changes, namely constant darkness (DD) or continuous light (LL). The two tissues differentially responded to constant environment. In the retina, a circadian AA-NAT activity rhythm disappeared after 5 days of DD, while in the pineal gland it persisted for the whole experiment. No circadian rhythm was observed in the retinas of turkeys exposed to LL, although rhythmic oscillations in both AA-NAT and melatonin content were found in the pineal glands. Both tissues required one or two cycles of the re-installed LD for the full recovery of the high-amplitude AA-NAT rhythm suppressed under constant conditions. It is suggested that the retina of turkey is less able to maintain rhythmicity in constant environment and is more sensitive to changes in the environmental lighting conditions than the pineal gland. Our results indicate that, in contrast to mammals, pineal glands of light-exposed galliformes maintain the limited capacity to rhythmically produce melatonin.  相似文献   

9.
Daily and circadian variations of melatonin contents in the diencephalic region containing the pineal organ, the lateral eyes, and plasma were studied in a urodele amphibian, the Japanese newt (Cynops pyrrhogaster), to investigate the possible roles of melatonin in the circadian system. Melatonin levels in the pineal region and the lateral eyes exhibited daily variations with higher levels during the dark phase than during the light phase under a light-dark cycle of 12 h light and 12 h darkness (LD12:12). These rhythms persisted even under constant darkness but the phase of the rhythm was different from each other. Melatonin levels in the plasma also exhibited significant day-night changes with higher values at mid-dark than at mid-light under LD 12:12. The day-night changes in plasma melatonin levels were abolished in the pinealectomized (Px), ophthalmectomized (Ex), and Px+Ex newts but not in the sham-operated newts. These results indicate that in the Japanese newts, melatonin production in the pineal organ and the lateral eyes were regulated by both environmental light-dark cycles and endogenous circadian clocks, probably located in the pineal organ and the retina, respectively, and that both the pineal organ and the lateral eyes are required to maintain the daily variations of circulating melatonin levels.  相似文献   

10.
Pineal melatonin levels were compared in laboratory-raised or wild-captured 13-lined ground squirrels (Spermophilus tridecemlineatus) that were either exposed to 10 h of darkness at night or to light which had an irradiance of 400 μW/cm2. In laboratory-born squirrels the period of darkness was associated with a gradual rise in pineal melatonin levels with peak values being reached at 0200 h, 6 h after darkness onset. Thereafter, melatonin levels decreased and were back to low daytime levels by 0800 h, 2 h after light onset. The exposure of laboratory-raised animals to an irradiance of 400 μW/cm2 during the night totally prevented the nocturnal rise in pineal melatonin levels in these animals. In wild-captured ground squirrels the period of darkness at night was associated with a rapid rise in pineal melatonin such that by 2200 h, 2 h after lights out, peak melatonin values were already attained; additionally, melatonin levels remained high throughout the period of darkness but returned to daytime values by 0800 h. Exposure of wild-captured squirrels to a light irradiance of 400 μW/cm2 during the normal dark period was completely incapable of suppressing pineal melatonin levels. The difference in the sensitivity of the pineal gland of laboratory-raised and wild-captured ground squirrels may relate to their previous lighting history.  相似文献   

11.
Summary Locomotor activity and feeding activity were measured together with circulating levels of melatonin in pigeons which were exposed to constant bright light (LLbright, 2000 lux) following light-dark (LD) cycles. Although all the pigeons showed daily rhythms of locomotor activity, feeding activity, and melatonin levels under LD cycles, they lost all the rhythms in prolonged LLbright. Acute exposure to bright light (2000 lux) during darkness reduced plasma melatonin levels. The half-time for the suppression in melatonin levels was about 30 min after short-term light exposure. These results support the hypothesis that melatonin may control the circadian rhythms of locomotor activity and feeding activity in the pigeon.Abbreviations LD light-dark - LLdim constant dim light - LLbright constant bright light - DD constant darkness - PX pinealectomy - EX blinding - RIA radioimmunoassay  相似文献   

12.
Studies on the maternal transfer of photoperiodic information in mammals indicate that the daily photoperiod perceived by the mother during the gestation-lactation period is communicated to the fetus either through the placenta or via the milk. However, the impact of photoperiodic exposures during gestation and lactation on the maternal pineal and reproductive physiology has not been reported for any tropical rodent. The exposure of pregnant female Indian palm squirrels (Funambulus pennanti) to constant light (24 h light:0 h dark), constant dark (0 h light:24 h dark), long daylength (14 h light:10 h dark) or short daylength (10 h light:14 h dark) during early gestation (< 30 days) resulted in the resorption of pregnancy, while during late gestation (> 30 days), it did not interfere with the maintenance of pregnancy. Alterations in photoperiodic condition during late gestation and lactation altered the postpartum recovery process. Pineal gland activity, as assessed by pineal mass, protein content and plasma melatonin, was lowest during the breeding phase, but increased gradually after parturition until the next breeding phase. During gestation and lactation, constant light, long daylength and short daylength conditions were less effective, while constant dark condition had a profound effect in depressing pineal gland activity, which subsequently advanced postpartum recovery. Hence, lactating females under constant darkness prepare themselves for next mating much earlier than females under natural daylength (12 h light:12 h dark) conditions. Therefore, photoperiodic information, mediated via the pineal gland, may be important for maintaining gestation physiology as well as postpartum recovery in female rodents.  相似文献   

13.
Wild-captured cotton rats (Sigmodon hispidus) trapped and tested in September and October exhibited a rapid reduction in pineal N-acetyltransferase (NAT) activity and melatonin levels after exposure to a light irradiance of 300 ωW/cm2 during the dark period. The half-time for the depression of both NAT and melatonin was on the order of 2 min. The exposure of cotton rats during darkness to much lower irradiances of light, i.e., 5.0, 0.04, 0.03 or 0.01 W/cm2, for 32 min also greatly diminished pineal NAT activity and radioimmunoassayable melatonin levels; however, a light irradiance of 0.005 ωW/cm2 failed to significantly depress either the acetylating enzyme or the melatonin content of the pineal gland. The results show that the pineal gland of the wild-captured cotton rat, as judged by NAT activity and melatonin levels, is inhibited even by very low irradiances of light.  相似文献   

14.
The aim of this work was to study the variations in the interference of neuroendocrine pineal gland and metabolically active thyroid gland in a tropical bird, Perdicula asiatica. Maximum pineal gland activity (pineal weight and melatonin level), minimum thyroid gland activity (weight, T3/T4 and thymidine kinase activity) along with less oxidative load (MDA level, SOD, CAT and ABTS activity) were observed during reproductively inactive phase (RIP) was observed. Further, a robust and significant rhythmicity was noted in melatonin levels during RIP and RAP, but no significant rhythmicity was noted in T4/T3 level by cosinor analysis. Overall, melatonin and thyroid circadian profile suggested that melatonin might be acting as an antioxidant molecule with time of the day effect in rescuing thyroid gland from free radical load in birds.  相似文献   

15.
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.  相似文献   

16.
The present study tested the hypothesis that the nocturnal melatonin rhythm in the fetal sheep results from transfer across the placenta of melatonin from maternal circulation. Pregnant ewes were exposed to an artificial reverse photoperiod at about 100 days gestation (n = 6; lights on 10 h, 2200-0800 h PST). This treatment tested for entrainment in the ewe and its fetus of the 24-h pattern of melatonin production from the pineal gland. Other ewes were pinealectomized at 55 days post-breeding (n = 6), and similarly treated. Catheters were implanted and blood samples were collected between 117 and 142 days gestation at two 48-h periods, about every 0.5-4 h, to assess the pattern of melatonin in maternal and fetal circulations. In pineal-intact ewes and their fetuses, melatonin rhythms conformed to the reverse photoperiod, i.e. plasma melatonin concentrations were relatively low during the light period and significantly increased for the duration of darkness. In contrast, maternal pinealectomy abolished the melatonin rhythms in both the ewe and fetus; melatonin concentrations remained at or below the limits of detection. Pineal-intact sheep gave birth about 139 +/- 2 days (mean +/- SE, n = 4) at 1915 +/- 0.7 h and pinealectomized ewes (n = 5 of 6) lambed at 149 +/- 2 days at 0424 +/- 0.5 h. Finally, in lambs (n = 3) born to pinealectomized ewes, typical melatonin rhythms were present within the first week of life. The findings indicate that the maternal pineal gland is responsible for the 24-h pattern of melatonin in the ewe and its fetus during the last trimester of pregnancy.  相似文献   

17.
Ovine serum and pineal melatonin levels are low during the day, increase five to ten-fold at night, decrease during a light pulse at night, and rapidly increase to night levels following the light-dark transition. N-Acetyltransferase activity increases three-fold at night, falls significantly in response to the light pulse, but does not increase following the light pulse. No significant change in N-acetylserotonin occurs under these conditions. These results suggest that the biochemical mechanisms controlling pineal melatonin synthesis in the sheep pineal gland may be different from those in the rat.  相似文献   

18.
In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12?h:12?h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.  相似文献   

19.
Melatonin profiles were determined in the plasma in vivo and in the pineal organ in vitro of the sockeye salmon (Oncorhynchus nerka) under various light conditions to test whether they are under circadian regulation. When serial blood samples were taken at 4-h intervals for 3 days via a cannula inserted into the dorsal aorta, plasma melatonin exhibited significant fluctuation under a light-dark cycle, with higher levels during the dark phase than during the light phase. No rhythmic fluctuations persisted under either constant dark or constant light, with constant low and high levels, respectively. Melatonin release from the pineal organ in flow-through culture exhibited a similar pattern in response to the change in light conditions, with high and low release associated with the dark and light phases, respectively. These results indicate that melatonin production in the sockeye salmon is driven by light and darkness but lacks circadian regulation.  相似文献   

20.
Summary The avian pineal gland contains a circadian pacemaker that oscillates in vitro. Using a flow-through culture system it is possible to measure melatonin production from very small subsections of an individual gland. We have used this technique to attempt to localize the oscillators in the pineal. Progressive tissue reduction did not affect the rhythmicity of cultured pineals. Multiple pieces (up to eight) from a single pineal all were capable of circadian oscillation — establishing directly that a pineal gland contains at least eight oscillators. All pineal pieces were responsive to light, and single light pulses shifted the phase of the melatonin rhythm. Because pieces equivalent to less than one per cent of the whole gland were rhythmic and because the capacity for oscillation was distributed throughout the gland, an individual pineal appears to be composed of a population of circadian oscillators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号