首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocytosis is now considered a basic cellular process common to plant cells. Although both non-specific and receptor-mediated endocytosis appear to take place in plant cells, the physiological role of the latter remains unclear. We have investigated the endocytic process in rice cell suspensions using two biotinylated proteins, peroxidase and bovine serum albumin (bHRP and bBSA), as markers. First, we show that markers are internalized by rice cells and appear in intracellular membranes. The uptake of the two markers is temperature dependent, saturable with time and markers dose and it is competed by free biotin. Thus, it shows the properties of a receptor-mediated process. We also show that uptake of markers is strongly influenced by growth phase as optimal uptake occurs during the lag phase, but the initiation of the exponential growth phase decreases uptake drastically. Arrest of the cell cycle by starvation of either a nutrient (phosphate) or a growth regulator (2,4-dichlorophenoxyacetic acid), both components of the culture medium, does not modify the rate of bBSA uptake. Subsequent readdition of these components results in growth recovery and a dramatic decrease in bBSA uptake. On the other hand, nocodazole treatment, a method to arrest the cell cycle by microtubule depolymerization, inhibited bBSA uptake. The possible causes for this arrest of endocytosis are discussed.  相似文献   

2.
Plant dehydration is commonly caused by some adverse environmental conditions such as salinity, drought and freezing. As the plant hormone abscisic acid (ABA) is involved in responses to water stress, we studied its putative relationship with the degree of tolerance to these abiotic stresses. For this purpose we used cell lines that had been established from mature embryos of rice (Oryza sativa L, cvs. Bahia and Bomba), and selected by their high (L-T) or low (L-S) levels of tolerance to each type of stress. Tolerance of rice calli to either osmotic, saline, or freezing stress was generally improved by a previous treatment with ABA. This ABA effect was evident in those callus lines with low tolerance (L-S), as their ability to recover from stress increased up to three fold. Independent of the cultivar used, there were no significant differences in the endogenous ABA contents between untreated L-T and L-S lines. However, upon stress, the increase in endogenous ABA was higher in L-T than in L-S lines. These results, together with those obtained by using Fluridone, an inhibitor of ABA synthesis, show that differences in the level of cell tolerance to osmotic, saline and freezing stress are related to their different capacity of ABA synthesis under stress conditions.  相似文献   

3.
The expression of the maize polyubiquitin gene promoter UBI1 in rice cells has been used to study the involvement of ubiquitin in cell protection responses to dehydration caused by osmotic, saline or freezing stress. The effect of these stresses on UBI1 activity was investigated by the use of stably transformed rice calli (UBI1:GUS), as well as by transient expression experiments performed with cell lines with high or low tolerance to each type of stress. The theoretical analysis of the UBI1 promoter shows several putative stress-regulated boxes that could account for the stress-related UBI1 induction pattern described in this work. We suggest that the study of the differential UBI1 promoter-driven expression in rice cell lines with different level of tolerance to stress might be useful to elucidate complex signal transduction pathways in response to dehydration stresses in monocots.  相似文献   

4.
Tolerance of Populus euphratica suspended cells to ionic and osmotic stresses implemented respectively by NaCl and PEG (6000) was characterized by monitoring cell growth, morphological features, ion compartmentation and polypeptide patterns. The cells grew and proliferated when submitted to stresses of 137 mM NaCl or 250 g l−1 PEG, and survived at 308 mM of NaCl, showing tolerance to saline and particularly osmotic stress. They were resistant to plasmolysis and had dense cytoplasms, large nuclei and nucleoli, and evident cytoplasmic strands under high saline and osmotic stress. The sequestration of Cl into the vacuoles was observed in the cells stressed with 137 and 223 mM NaCl. The cellular protein profile was modified by high salt and osmotic stress and showed 28 kDa polypeptides up-regulated by both NaCl and PEG, and 66 and 25 kDa polypeptides up-regulated only by high NaCl stress. The salt tolerance of P. euphratica cells might be related to their capacity of adapting to higher osmotic stress by maintaining cell integrity, sequestrating Cl into vacuoles and modulating polypeptides that reflect cellular metabolic adaptations.  相似文献   

5.
为探究核黄素在水稻非生物胁迫响应中的作用,以粳稻Kitaake和籼稻T98B为试验材料,考察了核黄素对2种材料的盐、高温、渗透、碱和氧化胁迫响应的影响,重点测定了盐和高温胁迫下水稻体内核黄素合成基因的表达和相关生理指标。结果表明,(1)施加外源核黄素有效提高了2种水稻材料的盐和高温胁迫耐受性,降低了渗透胁迫耐受性,而其氧化和碱胁迫耐受性不受影响。(2)逆境胁迫均不同程度地促进了核黄素在2种水稻材料中的积累,尤其在盐和高温胁迫下促进效果最明显。(3)盐和高温胁迫均诱导了核黄素合成酶基因的表达,促进了核黄素的生物合成,改善了水稻的胁迫耐受性。研究表明,非生物逆境胁迫能促进核黄素在水稻体内的合成和积累,外源核黄素也能明显提高水稻对盐和高温胁迫的耐受性,但却降低了其对渗透胁迫的耐受性。  相似文献   

6.
7.
A total of ten rare indigenous rice landraces of West Bengal were screened for germination potential and seedling growth under varying concentrations of sodium chloride (NaCl) and polyethylene glycol (PEG) solutions as osmotic stress inducing agents. Among the studied rice landraces Kelas and Bhut Moori showed highest degree of tolerance to induced osmotic stresses. Proline content of the studied lines was also determined. Genetic relationship among the studied rice landraces was assessed with 22 previously reported osmotic stress tolerance linked Simple Sequence Repeat (SSR) markers. The identified allelic variants in form of amplified products size (molecular weight) for each SSR marker were documented to find out allele mining set for the linked markers of the studied genotypes in relation to osmotic stress tolerance. A Microsatellite Panel was constructed for the different allelic forms (size of amplified products) of each used marker. Among 22 SSR markers, ten showed unique alleles in form of single specific amplified product for the studied four genotypes which can be used for varietal identification. Genetic relationship among the studied rice lines was determined and a dendrogram was constructed to reveal their genetic inter-relationship. Polymorphism Information Content (PIC) for each used marker was also calculated for the studied rice lines.  相似文献   

8.
9.
Mitogen-activated protein kinases (MAPK) signalling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signalling in plants, aMAPK cDNA clone, OsMAPK33, was isolated from rice. The gene is mainly induced by drought stress. In phylogenetic analysis, OsMAPK33 (Os02g0148100) showed approximately 47-93% identity at the amino acid level with other plant MAPKs. It was found to exhibit organ-specific expression with relatively higher expression in leaves as compared with roots or stems, and to exist as a single copy in the rice genome. To investigate the biological functions of OsMAPK33 in rice MAPK signalling, transgenic rice plants that either overexpressed or suppressed OsMAPK33 were made. Under dehydration conditions, the suppressed lines showed lower osmotic potential compared with that of wild-type plants, suggesting a role of OsMAPK33 in osmotic homeostasis. Nonetheless, the suppressed lines did not display any significant difference in drought tolerance compared with their wild-type plants. With increased salinity, there was still no difference in salt tolerance between OsMAPK33-suppressed lines and their wild-type plants. However, the overexpressing lines showed greater reduction in biomass accumulation and higher sodium uptake into cells, resulting in a lower K+/Na+ ratio inside the cell than that in the wild-type plants and OsMAPK33-suppressed lines. These results suggest that OsMAPK33 could play a negative role in salt tolerance through unfavourable ion homeostasis. Gene expression profiling of OsMAPK33 transgenic lines through rice DNA chip analysis showed that OsMAPK33 altered expression of genes involved in ion transport. Further characterization of downstream components will elucidate various biological functions of this novel rice MAPK.  相似文献   

10.
11.
12.
13.
14.
Cell penetrating peptides (CPP) have been widely used to increase the cellular delivery of their associated cargo. Multiple modes of uptake have been identified; however, they cannot be predicted a priori. Elucidating these mechanisms is important for understanding peptide function as well as further optimizing cellular delivery. We have developed a class of mitogen activated protein kinase activated protein kinase 2 (MK2) inhibitor peptides, named FAK and YARA that utilize CPP domains to gain cellular access. In this study, we investigate the mechanism of endocytosis of these MK2 inhibitors by examining the uptake of fluorescently labeled peptide in human monocyte (THP‐1) and mesothelial cells, and looking for colocalization with known markers of endocytosis. Our results indicate that uptake of the MK2 inhibitors was minimally enhanced by the addition of the fluorescent label, and that the type of endocytosis used by the inhibitor depends on several factors including concentration, cell type, and which CPP was used. We found that in THP‐1 cells, the uptake of YARA occurred primarily via macropinocytosis, whereas FAK entered via all three mechanisms of endocytosis examined in this study. In mesothelial cells, uptake of YARA occurred via caveolae‐mediated endocytosis, but became less specific at higher concentrations; whereas uptake of FAK occurred through clathrin‐mediated endocytosis. In all cases, the delivery resulted in active inhibition of MK2. In summary, the results support endocytic uptake of fluorescently labeled FAK and YARA in two different cell lines, with the mechanism of uptake dependent on extracellular concentration, cell type, and choice of CPP. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The uptake and incorporation of radioactive leucine by Convolvulus arvensis L. suspension culture cells were studied under various osmotic conditions to provide information about the effects of osmotic stress at the cellular level and about the suitability of various osmotica for stabilizing protoplasts. When manitol, sorbitol, sucrose, or a mixture of CaCl2 and KCl was added to the cells at a concentration normally used to stabilize protoplasts, the uptake of leucine was inhibited by 50 to 60% and incorporation by 37% with no major differences detected among these osmotica. NaNO3 of a similar osmotic strength exerted considerably more inhibition, an inhibition that was reversed by as little as 10 mM simultaneous CaCl2. None of the osmotica altered leucine or protein leakage from the tissue. In general, external solute concentrations below 0.36 osmolal slightly enhanced uptake and incorporation. At successively higher concentrations, uptake and incorporation decreased in a linear fashion, with no apparent discontinuity in the rate of decrease as the cells plasmolyzed. Cycloheximide inhibited both the uptake and the incorporation of leucine in all osmotic situations tested, exerting a much stronger inhibition upon the uptake by control tissue than upon that by cells in osmotica. Different cellulase enzyme preparations varied considerably in their effects on subsequent leucine uptake and incorporation.  相似文献   

16.
17.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   

18.
Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192–196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1–T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.  相似文献   

19.
The effects of ionic stress on the physiology and gene expression of two rice genotypes (IR4630 and IR15324) that differ in salt tolerance, were investigated by evaluating changes in the biomass, Na+ and K+ concentrations and applying the cDNA-AFLP technique to highlight changes in gene expression. Over 8 days of salinisation, the effect of NaCl on the reduction of biomass (dry weight) was apparent from 24 h after salinisation (the first time point), indicating that the consequences of the build up of Na+ (and Cl-) in the leaves of both lines was rapid. Furthermore, root growth of IR15324 was much more sensitive to salt than that of IR4630 (the reduction in root dry weight compared to non-salinised plants was three times greater in IR15324 than IR4630). The two rice lines also differed in their Na+ accumulation in saline conditions, a difference that was more marked in the shoots, particularly at the final harvest, than in the roots. Under salt stress, the K+ content (µmol/shoot) increased over four successive harvests (24, 48, 96, 192 h) in both lines, but was always greater in IR4630 than in IR15324: differences in Na+/K+ ratio appear to be an important determinant of salt tolerance in rice. To separate osmotic from ionic effects of salt, mannitol was applied as a non-ionic osmoticum at an osmotic potential estimated to be equivalent to 50 mM NaCl. Messenger RNA was sampled at 0.5, 6, 24, 48 and 192 hours after salinisation. Several products (AFLP-bands) were detected, which were upregulated in the response to ionic effects of salt in the tolerant line (IR4630) and not expressed in the sensitive line (IR15324). Bioinformatic analysis indicated three of these AFLP-bands have a high-degree of sequence similarity with the genes encoding a proline rich protein, senescence associated protein and heat-shock protein. The data are novel in that they differentially highlight changes induced by the ionic rather than osmotic effects of salt and in a tolerant rather than a sensitive genotype. The possible roles of the products of these genes are discussed.  相似文献   

20.
Improving salinity tolerance in crop plants: a biotechnological view   总被引:1,自引:0,他引:1  
Salinity limits the production capabilities of agricultural soils in large areas of the world. Both breeding and screening germplasm for salt tolerance encounter the following limitations: (a) different phenotypic responses of plants at different growth stages, (b) different physiological mechanisms, (c) complicated genotype × environment interactions, and (d) variability of the salt-affected field in its chemical and physical soil composition. Plant molecular and physiological traits provide the bases for efficient germplasm screening procedures through traditional breeding, molecular breeding, and transgenic approaches. However, the quantitative nature of salinity stress tolerance and the problems associated with developing appropriate and replicable testing environments make it difficult to distinguish salt-tolerant lines from sensitive lines. In order to develop more efficient screening procedures for germplasm evaluation and improvement of salt tolerance, implementation of a rapid and reliable screening procedure is essential. Field selection for salinity tolerance is a laborious task; therefore, plant breeders are seeking reliable ways to assess the salt tolerance of plant germplasm. Salt tolerance in several plant species may operate at the cellular level, and glycophytes are believed to have special cellular mechanisms for salt tolerance. Ion exclusion, ion sequestration, osmotic adjustment, macromolecule protection, and membrane transport system adaptation to saline environments are important strategies that may confer salt tolerance to plants. Cell and tissue culture techniques have been used to obtain salt tolerant plants employing two in vitro culture approaches. The first approach is selection of mutant cell lines from cultured cells and plant regeneration from such cells (somaclones). In vitro screening of plant germplasm for salt tolerance is the second approach, and a successful employment of this method in durum wheat is presented here. Doubled haploid lines derived from pollen culture of F1 hybrids of salt-tolerant parents are promising tools to further improve salt tolerance of plant cultivars. Enhancement of resistance against both hyper-osmotic stress and ion toxicity may also be achieved via molecular breeding of salt-tolerant plants using either molecular markers or genetic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号