首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vacuolar processing enzyme (VPE) has been shown to be responsible for maturation of various seed proteins in protein-storage vacuoles. Arabidopsis has three VPE homologues; betaVPE is specific to seeds and alphaVPE and gammaVPE are specific to vegetative organs. To investigate the activity of the vegetative VPE, we expressed the gammaVPE in a pep4 strain of the yeast Saccharomyces cerevisiae and found that gammaVPE has the ability to cleave the peptide bond at the carbonyl side of asparagine residues. An immunocytochemical analysis revealed the specific localization of the gammaVPE in the lytic vacuoles of Arabidopsis leaves that had been treated with wounding. These findings indicate that gammaVPE functions in the lytic vacuoles as the betaVPE does in the protein-storage vacuoles. The betaVPE promoter was found to direct the expression of the beta-glucuronidase reporter gene in seeds and the root tip of transgenic Arabidopsis plants. On the other hand, both the alphaVPE and gammaVPE promoters directed the expression in senescent tissues, but not in young intact tissues. The mRNA levels of both alphaVPE and gammaVPE were increased in the primary leaves during senescence in parallel with the increase of the mRNA level of a senescence-associated gene (SAG2). Treatment with wounding, ethylene and salicylic acid up-regulated the expression of alphaVPE and gammaVPE, while jasmonate slightly up-regulated the expression of gammaVPE. These gene expression patterns of the VPEs were associated with the accumulation of vacuolar proteins that are known to respond to these treatments. Taken together, the results suggest that vegetative VPE might regulate the activation of some functional proteins in the lytic vacuoles.  相似文献   

2.
3.
A cellular suicide strategy of plants: vacuole-mediated cell death   总被引:12,自引:0,他引:12  
Programmed cell death (PCD) occurs in animals and plants under various stresses and during development. Recently, vacuolar processing enzyme (VPE) was identified as an executioner of plant PCD. VPE is a cysteine protease that cleaves a peptide bond at the C-terminal side of asparagine and aspartic acid. VPE exhibited enzymatic properties similar to that of a caspase, which is a cysteine protease that mediates the PCD pathway in animals, although there is limited sequence identity between the two enzymes. VPE and caspase-1 share several structural properties: the catalytic dyads and three amino acids forming the substrate pockets (Asp pocket) are conserved between VPE and caspase-1. In contrast to such similarities, subcellular localizations of these proteases are completely different from each other. VPE is localized in the vacuoles, while caspases are localized in the cytosol. VPE functions as a key molecule of plant PCD through disrupting the vacuole in pathogenesis and development. Cell death triggered by vacuolar collapse is unique to plants and has not been seen in animals. Plants might have evolved a VPE-mediated vacuolar system as a cellular suicide strategy.  相似文献   

4.
A VPE family supporting various vacuolar functions in plants   总被引:5,自引:0,他引:5  
Vacuolar processing enzyme (VPE) is a cysteine protease that has substrate specificity toward Asn and Asp residues, and found in various eukaryotic organisms including higher plants and mammals. Plant VPEs are separated into three subfamilies: seed-type, vegetative-type and uncharacterized-type. VPE was originally identified as a protease responsible for the maturation of seed storage proteins, and recent research has shown that it is a key protease responsible for the maturation of various vacuolar proteins not only in maturating cotyledons, but also in vegetative tissues. Thus, the VPE-mediated processing system is important for various vacuolar functions in the plant. Vegetative-type VPEs are expressed during senescence or pathogen-induced hypersensitive response. A VPE-deficiency abolished programmed cell death during hypersensitive response in tobacco leaves after TMV infection. This suggests that vegetative-type VPEs are involved in vacuolar-organized programmed cell death.  相似文献   

5.
Vacuolar processing enzyme (VPE) is a Cys proteinase responsible for the maturation of vacuolar proteins. Arabidopsis thaliana deltaVPE, which was recently found in the database, was specifically and transiently expressed in two cell layers of the seed coat (ii2 and ii3) at an early stage of seed development. At this stage, cell death accompanying cell shrinkage occurs in the ii2 layer followed by cell death in the ii3 layer. In a deltaVPE-deficient mutant, cell death of the two layers of the seed coat was delayed. Immunocytochemical analysis localized deltaVPE to electron-dense structures inside and outside the walls of seed coat cells that undergo cell death. Interestingly, deltaVPE in the precipitate fraction from young siliques exhibits caspase-1-like activity, which has been detected in various types of plant cell death. Our results suggest that, at the early stage of seed development, deltaVPE is involved in cell death of limited cell layers, the purpose of which is to form a seed coat.  相似文献   

6.
Oxidative stress is a key apoptotic stimulus in neuronal cell death and has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinson disease (PD). Recently, we demonstrated that protein kinase C-delta (PKCdelta) is an oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce apoptotic cell death in cell culture models of Parkinson disease (Kaul, S., Kanthasamy, A., Kitazawa, M., Anantharam, V., and Kanthasamy, A. G. (2003) Eur. J. Neurosci. 18, 1387-1401 and Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A., and Anantharam, V. (2003) Antioxid. Redox. Signal. 5, 609-620). Here we showed that the phosphorylation of a tyrosine residue in PKCdelta can regulate the proteolytic activation of the kinase during oxidative stress, which consequently influences the apoptotic cell death in dopaminergic neuronal cells. Exposure of a mesencephalic dopaminergic neuronal cell line (N27 cells) to H(2)O(2)(0-300 microm) induced a dose-dependent increase in cytotoxicity, caspase-3 activation and PKCdelta cleavage. H(2)O(2)-induced proteolytic activation of PKC was delta mediated by the activation of caspase-3. Most interestingly, both the general Src tyrosine kinase inhibitor genistein (25 microm) and the p60(Src) tyrosine-specific kinase inhibitor (TSKI; 5 microm) dramatically inhibited H(2)O(2) and the Parkinsonian toxin 1-methyl-4-phenylpyridinium-induced PKCdelta cleavage, kinase activation, and apoptotic cell death. H(2)O(2) treatment also increased phosphorylation of PKCdelta at tyrosine site 311, which was effectively blocked by co-treatment with TSKI. Furthermore, N27 cells overexpressing a PKCdelta(Y311F) mutant protein exhibited resistance to H(2)O(2)-induced PKCdelta cleavage, caspase activation, and apoptosis. To our knowledge, these data demonstrate for the first time that phosphorylation of Tyr-311 on PKCdelta can regulate the proteolytic activation and proapoptotic function of the kinase in dopaminergic neuronal cells.  相似文献   

7.
As plants lack immune cells, each cell has to defend itself against invading pathogens. Plant cells have a large central vacuole that accumulates a variety of hydrolytic enzymes and antimicrobial compounds, raising the possibility that vacuoles play a role in plant defense. However, how plants use vacuoles to protect against invading pathogens is poorly understood. Recently, we characterized two vacuole-mediated defense strategies associated with programmed cell death (PCD). In one strategy, vacuolar processing enzyme (VPE) mediated the disruption of the vacuolar membrane, resulting in the release of vacuolar contents into the cytoplasm in response to viral infection. In the other strategy, proteasome-dependent fusion of the central vacuole with the plasma membrane caused the discharge of vacuolar antibacterial protease and cell death-promoting contents from the cell in response to bacterial infection. Intriguingly, both strategies relied on enzymes with caspase-like activities: the vacuolar membrane-collapse system required VPE, which has caspase-1-like activity and the membrane-fusion system required a proteasome that has caspase-3-like activity. Thus, plants may have evolved a cellular immune system that involves vacuolar membrane collapse to prevent the systemic spread of viral pathogens and membrane fusion to inhibit the proliferation of bacterial pathogens.Key words: plant-pathogen interaction, vacuole, hypersensitive cell death, caspase activity, vacuolar processing enzyme, proteasome  相似文献   

8.
Almost all plant cells have large vacuoles that contain both hydrolytic enzymes and a variety of defense proteins. Plants use vacuoles and vacuolar contents for programmed cell death (PCD) in two different ways: for a destructive way and for a non-destructive way. Destruction is caused by vacuolar membrane collapse, followed by the release of vacuolar hydrolytic enzymes into the cytosol, resulting in rapid and direct cell death. The destructive way is effective in the digestion of viruses proliferating in the cytosol, in susceptible cell death induced by fungal toxins, and in developmental cell death to generate integuments (seed coats) and tracheary elements. On the other hand, the non-destructive way involves fusion of the vacuolar and the plasma membrane, which allows vacuolar defense proteins to be discharged into the extracellular space where the bacteria proliferate. Membrane fusion, which is normally suppressed, was triggered in a proteasome-dependent manner. Intriguingly, both ways use enzymes with caspase-like activity; the membrane-fusion system uses proteasome subunit PBA1 with caspase-3-like activity, and the vacuolar-collapse system uses vacuolar processing enzyme (VPE) with caspase-1-like activity. This review summarizes two different ways of vacuole-mediated PCD and discusses how plants use them to attack pathogens that invade unexpectedly.  相似文献   

9.
Gruis D  Schulze J  Jung R 《The Plant cell》2004,16(1):270-290
The role(s) of specific proteases in seed protein processing is only vaguely understood; indeed, the overall role of processing in stable protein deposition has been the subject of more speculation than direct investigation. Seed-type members of the vacuolar processing enzyme (VPE) family were hypothesized to perform a unique function in seed protein processing, but we demonstrated previously that Asn-specific protein processing in developing Arabidopsis seeds occurs independently of this VPE activity. Here, we describe the unexpected expression of vegetative-type VPEs in developing seeds and test the role(s) of all VPEs in seed storage protein accumulation by systematically stacking knockout mutant alleles of all four members (alphaVPE, betaVPE, gammaVPE, and deltaVPE) of the VPE gene family in Arabidopsis. The complete removal of VPE function in the alphavpe betavpe gammavpe deltavpe quadruple mutant resulted in a total shift of storage protein accumulation from wild-type processed polypeptides to a finite number of prominent alternatively processed polypeptides cleaved at sites other than the conserved Asn residues targeted by VPE. Although alternatively proteolyzed legumin-type globulin polypeptides largely accumulated as intrasubunit disulfide-linked polypeptides with apparent molecular masses similar to those of VPE-processed legumin polypeptides, they showed markedly altered solubility and protein assembly characteristics. Instead of forming 11S hexamers, alternatively processed legumin polypeptides were deposited primarily as 9S complexes. However, despite the impact on seed protein processing, plants devoid of all known functional VPE genes appeared unchanged with regard to protein content in mature seeds, relative mobilization rates of protein reserves during germination, and vegetative growth. These findings indicate that VPE-mediated Asn-specific proteolytic processing, and the physiochemical property changes attributed to this specific processing step, are not required for the successful deposition and mobilization of seed storage protein in the protein storage vacuoles of Arabidopsis seeds.  相似文献   

10.

Fumonisin B1 (FB1) is a harmful mycotoxin produced by Fusarium species, which results in oxidative stress leading to cell death in plants. FB1 perturbs the metabolism of sphingolipids and causes growth and yield reduction. This study was conducted to assess the role of ethylene in the production and metabolism of reactive oxygen species in the leaves of wild type (WT) and ethylene receptor mutant Never ripe (Nr) tomato and to elucidate the FB1-induced phytotoxic effects on the photosynthetic activity and antioxidant mechanisms triggered by FB1 stress. FB1 exposure resulted in significant ethylene emission in a concentration-dependent manner in both genotypes. Moreover, FB1 significantly affected the photosynthetic parameters of PSII and PSI and activated photoprotective mechanisms, such as non-photochemical quenching in both genotypes, especially under 10 µM FB1 concentration. Further, the net photosynthetic rate and stomatal conductance were significantly reduced in both genotypes in a FB1 dose-dependent manner. Interestingly, lipid peroxidation and loss of cell viability were also more pronounced in WT as compared to Nr leaves indicating the role of ethylene in cell death induction in the leaves. Thus, FB1-induced oxidative stress affected the working efficiency of PSI and PSII in both tomato genotypes. However, ethylene-dependent antioxidant enzymatic defense mechanisms were activated by FB1 and showed significantly elevated levels of superoxide dismutase (18.6%), ascorbate peroxidase (129.1%), and glutathione S-transferase activities (66.62%) in Nr mutants as compared to WT tomato plants confirming the role of ethylene in the regulation of cell death and defense mechanisms under the mycotoxin exposure.

  相似文献   

11.
In Arabidopsis thaliana roots, the mutualistic fungus Piriformospora indica initially colonizes living cells, which die as the colonization proceeds. We aimed to clarify the molecular basis of this colonization-associated cell death. Our cytological analyses revealed endoplasmic reticulum (ER) swelling and vacuolar collapse in invaded cells, indicative of ER stress and cell death during root colonization. Consistent with this, P. indica-colonized plants were hypersensitive to the ER stress inducer tunicamycin. By clear contrast, ER stress sensors bZIP60 and bZIP28 as well as canonical markers for the ER stress response pathway, termed the unfolded protein response (UPR), were suppressed at the same time. Arabidopsis mutants compromised in caspase 1-like activity, mediated by cell death-regulating vacuolar processing enzymes (VPEs), showed reduced colonization and decreased cell death incidence. We propose a previously unreported microbial invasion strategy during which P. indica induces ER stress but inhibits the adaptive UPR. This disturbance results in a VPE/caspase 1-like-mediated cell death, which is required for the establishment of the symbiosis. Our results suggest the presence of an at least partially conserved ER stress-induced caspase-dependent cell death pathway in plants as has been reported for metazoans.  相似文献   

12.
Recent research has implicated nitric oxide (NO) in the induction of the hypersensitive response (HR) during plant-pathogen interactions. Here we demonstrate that Arabidopsis suspension cultures generate elevated levels of NO in response to challenge by avirulent bacteria, and, using NO donors, show that these elevated levels of NO are sufficient to induce cell death in Arabidopsis cells independently of reactive oxygen species (ROS). We also provide evidence that NO-induced cell death is a form of programmed cell death (PCD), requiring gene expression, and has a number of characteristics of PCD of mammalian cells: NO induced chromatin condensation and caspase-like activity in Arabidopsis cells, while the caspase-1 inhibitor, Ac-YVAD-CMK, blocked NO-induced cell death. A well-established second messenger mediating NO responses in mammalian cells is cGMP, produced by the enzyme guanylate cyclase. A specific inhibitor of guanylate cyclase blocked NO-induced cell death in Arabidopsis cells, and this inhibition was reversed by the cell-permeable cGMP analogue, 8Br-cGMP, although 8Br-cGMP alone did not induce cell death or potentiate NO-induced cell death. This suggests that cGMP synthesis is required but not sufficient for NO-induced cell death in Arabidopsis. In-gel protein kinase assays showed that NO activates a potential mitogen-activated protein kinase (MAPK), although a specific inhibitor of mammalian MAPK activation, PD98059, which blocked H2O2-induced cell death, did not inhibit the effects of NO.  相似文献   

13.
Plants degrade cellular materials during senescence and under various stresses. We report that the precursors of two stress-inducible cysteine proteinases, RD21 and a vacuolar processing enzyme (VPE), are specifically accumulated in approximately 0.5 microm diameter x approximately 5 microm long bodies in Arabidopsis thaliana. Such bodies have previously been observed in Arabidopsis but their function was not known. They are surrounded with ribosomes and thus are assumed to be directly derived from the endoplasmic reticulum (ER). Therefore, we propose to call them the ER bodies. The ER bodies are observed specifically in the epidermal cells of healthy seedlings. These cells are easily wounded and stressed by the external environment. When the seedlings are stressed with a concentrated salt solution, leading to death of the epidermal cells, the ER bodies start to fuse with each other and with the vacuoles, thereby mediating the delivery of the precursors directly to the vacuoles. This regulated, direct pathway differs from the usual case in which proteinases are transported constitutively from the ER to the Golgi complex and then to vacuoles, with intervention of vesicle-transport machinery, such as a vacuolar-sorting receptor or a syntaxin of the SNARE family. Thus, the ER bodies appear to be a novel proteinase-storing system that assists in cell death under stressed conditions.  相似文献   

14.
Proteases play important roles in plant innate immunity. In this mini-review, we describe the current view on the role of a plant protease, vacuolar processing enzyme (VPE), and the first identified plant caspase-1-like protein, in plant immunity. In the past several years, VPEs were determined to play important roles in various types of cell death in plants. Early studies demonstrated the identification of VPE as a vacuolar hydrolytic protein responsible for maturation of vacuolar proteins. Later, Nicotiana benthamiana VPE was reported to mediate virus-induced hypersensitive response by regulating membrane collapse. The ortholog of VPE in Arabidopsis is also suggested to be involved in both mycotoxin-induced cell death and developmental cell death. However, the role of VPE in elicitor-signaling is still unclear. Our recent studies demonstrated the involvement of VPE in elicitor signal transduction to induce stomatal closure and defense responses, including defense gene expression and hypersensitive cell death.Key words: hypersensitive cell death, elicitor, stomatal closure, pathogen-associated molecular patterns, plant innate immunity, programmed cell deathIn the course of their development, plants have had to face a wide range of potential pathogens, including viral, bacterial, fungal and oomycete pathogens. Plants, unlike animals, which have specialized defender cells and an adaptive immune system, have an innate immunity of each cell and produce systemic signals emanating from the infection site. The plant innate immunity (PTI) is induced by pathogen-associated molecular patterns (PAMPs)1 and elicitors.2,3 However, some pathogens deliver virulence proteins that target host protein to overcome the plant immunity response. Most plants have evolved the corresponding resistance (R) protein to recognize effector activity, which will trigger plant resistance through effector-triggered immunity (ETI).4 Natural selection drives evolution of new pathogen effector proteins and plant R proteins. This tug-of-war between plants and pathogens is represented as a zig-zag-zig model.57 Both PTI and ETI cause stomatal closure and hypersensitive response (HR), a programmed host cell death (PCD) to limit pathogen development.5,8 In plants, HR is caused by proteases with caspase activity. At least eight caspase activities have now been measured in plant extracts, which were found using caspase substrates, and various caspase inhibitors can block many forms of plant programmed cell death.9In the past several years, vacuolar-processing enzyme (VPE) has been determined to play important roles in plant immunity responses. In this review paper, I describe the current view on the role of VPE in plant immunity, based on our own research and recent developments in this field.  相似文献   

15.
Vacuolar processing enzyme: an executor of plant cell death   总被引:1,自引:0,他引:1  
Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.  相似文献   

16.
Vacuolar collapse plays a direct role in the cell death of the interspecific hybrid of Nicotiana gossei Domin ×N. tabacum L. which exhibits hybrid lethality at the seedling stage. We have previously reported that cell death in these seedlings began at the base of hypocotyls and spread throughout the plant (Mino et al. 2002). A light microscopic analysis revealed that the process involved disruption of the intra-cellular membranes, plasmolysis, and retraction of the wall of the cell in hypocotyls. A transmission electron microscopic analysis showed that there were several abnormal structures, i.e. knob-like bodies on the tonoplast and small vesicles in the cytoplasm, and the disintegration of the tonoplast, in the cells of seedlings grown at 26°C. However, no such cytological defects were observed in the seedlings grown at 37°C, at which temperature the expression of lethality was suppressed. The activity levels of vacuolar processing enzyme (VPE), which might be involved in the vacuolar collapse of plant cells, temporarily increased in the seedlings grown at 26°C before apparent cell death proceeded, but it remained unchanged in the seedlings grown at 37°C. Applications of acetyl-l-tyrosyl-l-valyl-l-alanyl-l-aspart-1-aldehyde, an inhibitor for VPE, and cycloheximide to the seedlings suppressed VPE's activities, the formation of knob-like bodies on the tonoplast, and cell death. VPE might be involved in the structural anomalies on the tonoplast which lead to cell death triggered by vacuolar collapse in hybrid seedlings.  相似文献   

17.
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.  相似文献   

18.
19.
Alternaria alternata AT Toxin Induces Programmed Cell Death in Tobacco   总被引:1,自引:0,他引:1  
Detached tobacco leaves were infiltrated with an AT toxin preparation from the foliar pathogen Alternaria alternata tobacco pathotype. The AT toxin preparation caused formation of necrotic lesions within 5 days post-infiltration in a concentration-dependent manner. Cell death was accompanied by increased levels of the stress metabolites hydrogen peroxide, malondialdehyde, free proline and by enhanced total protease activity. Lesion development and the production of stress metabolites were suppressed if the infiltration site was pre-infiltrated with caspase-specific peptide inhibitors (irreversible caspase-1 inhibitor acyl-Tyr-Val-Ala-Asp-chloromethylketone (Ac-YVAD-CMK) and the broad range caspase inhibitor benzyoxycarbonyl-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp-CH2-DCB)), the serine protease inhibitor Nα-p-tosyl- l -lysine chloromethylketone and the polyamine spermine. Extensive accumulation of reactive oxygen species (ROS), as determined by staining with 3-3'-diaminobenzidine and 2',7'-dichlorofluorescein diacetate, was found in the AT toxin-challenged lesions. The data show that AT toxin-induced cell death in tobacco is a type of programmed cell death in which caspase-like proteases and ROS signalling play a prominent role.  相似文献   

20.
Ganglioside-induced apoptosis in mouse thymocytes was shown to be caspase-dependent, mitochondria being involved in the apoptosis-signaling pathway of GM1-, GD3-and GT1b-stimulated cells. According to their role in caspase-8-induced signaling cascades in thymocytes, these gangliosides can be divided into two groups, viz., those activating cell apoptosis by a mitochondrial route without the involvement of death receptors and caspase-8 (the so-called mitochondrial signaling cascade) (GD3), and those activating this process by receptor-mediated and mitochondrial routes (GM1 and GT1b). Anti-Fas antibodies that activate apoptosis of thymocytes by receptor pathway were used as a reference system. Cytofluorimetric studies of chromosomal DNA fragmentation revealed that effector caspase-3 is involved in apoptotic signaling cascades triggered by all the gangliosides under study. At the same time, the caspase-3 inhibitor Z-DEVD-FMK abolished the ganglioside-and antibody-induced depolarization of thymocyte mitochondrial membranes by a receptor-dependent route either partly (GM1 and GT1b) or completely (anti-Fas antibodies). Thymocytes stimulated by GD3 by a mitochondrial apoptotic route were an exception. Possible mechanisms of the caspase-3 involvement in the regulation of the activity of mitochondrial apoptosis-induced channels (MAC) are discussed and in particular, the role of proapoptotic proteins Bax/Bid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号