首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human myeloperoxidase (MPO) uses hydrogen peroxide generated by the oxidative burst of neutrophils to produce an array of antimicrobial oxidants. During this process MPO is irreversibly inactivated. This study focused on the unknown role of hydrogen peroxide in this process. When treated with low concentrations of H2O2 in the absence of reducing substrates, there was a rapid loss of up to 35% of its peroxidase activity. Inactivation is proposed to occur via oxidation reactions of Compound I with the prosthetic group or amino acid residues. At higher concentrations hydrogen peroxide acts as a suicide substrate with a rate constant of inactivation of 3.9 × 10−3 s−1. Treatment of MPO with high H2O2 concentrations resulted in complete inactivation, Compound III formation, destruction of the heme groups, release of their iron, and detachment of the small polypeptide chain of MPO. Ten of the protein’s methionine residues were oxidized and the thermal stability of the protein decreased. Inactivation by high concentrations of H2O2 is proposed to occur via the generation of reactive oxidants when H2O2 reacts with Compound III. These mechanisms of inactivation may occur inside neutrophil phagosomes when reducing substrates for MPO become limiting and could be exploited when designing pharmacological inhibitors.  相似文献   

2.
Within 1 min of stimulation of human neutrophils by the chemotactic peptide (N-formyl-L-methionyl-L-leucyl-L-phenylalanine) plus cytochalasin B, myeloperoxidase (together with other granule enzymes) was secreted and detected extracellularly. In contrast with the other granule constituents assayed (vitamin B12-binding protein and beta-glucuronidase), the activity of released myeloperoxidase rapidly decreased, so that, by 10 min after stimulation, only about 5% of the total cellular activity was detected. This inactivation was shown to be dependent on oxidant generation during the respiratory burst, since inactivation was not observed (a) after stimulation of anaerobic suspensions or (b) after release from neutrophils from a patient with chronic granulomatous disease; purified myeloperoxidase was rapidly inactivated after incubation with H2O2, presumably owing to the formation of an inactive enzyme-H2O2 complex. These results show that experiments designed to assess the role of myeloperoxidase in neutrophil functions which utilize assays based on peroxidase activity will grossly underestimate this enzyme if oxidant generation during the respiratory burst has also been activated.  相似文献   

3.
Pneumolysin, a hemolytic toxin from Streptococcus pneumoniae, is a member of the group of thiol-activated, oxygen-labile cytolysins produced by various Gram-positive bacteria. The toxin activity of pneumolysin, as determined by lysis of 51Cr-labeled human erythrocytes, was destroyed on exposure to the neutrophil enzyme myeloperoxidase, hydrogen peroxide, and a halide (chloride or iodide). Detoxification required each component of the myeloperoxidase system and was prevented by the addition of agents that inhibit heme enzymes (azide, cyanide) or degrade H2O2 (catalase). Reagent H2O2 could be replaced by the peroxide-generating enzyme system glucose oxidase plus glucose. The entire myeloperoxidase system could be replaced by sodium hypochlorite at micromolar concentrations. Toxin inactivation was a function of time of exposure to the myeloperoxidase system (less than 1 min), the rate of formation of H2O2 (0.05 nmol/min), and the concentration of toxin employed. Toxin that had been inactivated by the myeloperoxidase system was reactivated on incubation with the reducing agent dithiothreitol. Pneumolysin was also inactivated when incubated with human neutrophils (10(5)) in the presence of a halide and phorbol myristate acetate, an activator of neutrophil secretion and oxygen metabolism. Toxin inactivation by stimulated neutrophils was blocked by azide, cyanide, or catalase, but not by superoxide dismutase. Neutrophils from patients with impaired oxygen metabolism (chronic granulomatous disease) or absent myeloperoxidase (hereditary deficiency) failed to inactivate the toxin unless they were supplied with an exogenous source of H2O2 or purified myeloperoxidase, respectively. Thus, inactivation of pneumolysin involved the secretion of myeloperoxidase and H2O2, which combined with extracellular halides to form agents (e.g., hypochlorite) capable of oxidizing the toxin. This example of oxidative inactivation of a cytolytic agent may serve as a model for phagocyte-mediated detoxification of microbial products.  相似文献   

4.
Examination of the spectra of phagocytosing neutrophils and of myeloperoxidase present in the medium of neutrophils stimulated with phorbol myristate acetate has shown that superoxide generated by the cells converts both intravacuolar and exogenous myeloperoxidase into the superoxo-ferric or oxyferrous form (compound III or MPO2). A similar product was observed with myeloperoxidase in the presence of hypoxanthine, xanthine oxidase and Cl-. Both transformations were inhibited by superoxide dismutase. Thus it appears that myeloperoxidase in the neutrophil must function predominantly as this superoxide derivative. MPO2 autoxidized slowly (t 1/2 = 12 min at 25 degrees C) to the ferric enzyme. It did not react directly with H2O2 or Cl-, but did react with compound II (MP2+ X H2O2). MPO2 catalysed hypochlorite formation from H2O2 and Cl- at approximately the same rate as the ferric enzyme, and both reactions showed the same H2O2-dependence. This suggests that MPO2 can enter the main peroxidation pathway, possibly via its reaction with compound II. Both ferric myeloperoxidase and MPO2 showed catalase activity, in the presence or absence of Cl-, which predominated over chlorination at H2O2 concentrations above 200 microM. Thus, although the reaction of neutrophil myeloperoxidase with superoxide does not appear to impair its chlorinating ability, the H2O2 concentration in its environment will determine whether the enzyme acts primarily as a catalase or peroxidase.  相似文献   

5.
The human neutrophil lysosomal enzyme, myeloperoxidase (MPO), exists in three major and chromatographically distinct forms, MPO I, MPO II, and MPO III. We used cation-exchange medium-pressure liquid chromatography and kinetic microenzyme assay (or spectrophotometric monitoring) to analyze the secretion of MPO isoforms by neutrophils exposed to N-formylmethionylleucylphenylalanine (FMLP), digitonin, the ionophore A23187, and serum-opsonized zymosan A (SOZ). All three MPO isomers were released into the fluid phase after neutrophils were exposed to these secretagogues. A significant proportional increase in MPO I was released when neutrophils were stimulated with SOZ. MPO I was released in higher proportions than found in the whole cell constituency when neutrophils were stimulated with FMLP + cytochalasin B, A23187, and digitonin, but this was not statistically significant.  相似文献   

6.
The structural integrity of apolipoprotein A-I (apo A-I) is critical to the physiological function of high-density lipoprotein (HDL). Oxidized lipoproteins are thought to be of central importance in atherogenesis, and oxidation products characteristic of myeloperoxidase, a heme protein secreted by activated phagocytes, have been detected in human atherosclerotic tissue. At plasma concentrations of halide ion, hypochlorous acid is a major product of the myeloperoxidase-hydrogen peroxide-chloride system. We therefore investigated the effects of activated human neutrophils, a potent source of myeloperoxidase and hydrogen peroxide, on the protein and lipid components of HDL. Both free and HDL-associated apo A-I exposed to activated human neutrophils underwent extensive degradation as monitored by RP-HPLC and Western blotting with a polyclonal antibody to apo A-I. Replacement of the neutrophils with reagent HOCl resulted in comparable damage (at molar oxidant : HDL subclass 3 ratio = 100) as observed in the presence of activated phagocytes. Apo A-I degradation by activated neutrophils was partially inhibited by the HOCl scavenger methionine, by the heme inhibitor azide, by chloride-free conditions, by the peroxide scavenger catalase, and by a combination of superoxide dismutase (SOD)/catalase, implicating HOCl in the cell-mediated reaction. The addition of a protease inhibitor (3,4-dichloroisocoumarin) further reduced the extent of apo A-I damage. In contrast to the protein moiety, there was little evidence for oxidation of unsaturated fatty acids or cholesterol in HDL3 exposed to activated neutrophils, suggesting that HOCl was selectively damaging apo A-I. Our observations indicate that HOCl generated by myeloperoxidase represents one pathway for protein degradation in HDL3 exposed to activated phagocytes.  相似文献   

7.
The mitochondrial presequence protease (PreP) is a member of the pitrilysin class of metalloproteases. It degrades the mitochondrial targeting presequences of mitochondria-localized proteins as well as unstructured peptides such as amyloid-β peptide. The specific activity of PreP is reduced in Alzheimer patients and animal models of Alzheimer disease. The loss of activity can be mimicked in vitro by exposure to oxidizing conditions, and indirect evidence suggested that inactivation was due to methionine oxidation. We performed peptide mapping analyses to elucidate the mechanism of inactivation. None of the 24 methionine residues in recombinant human PreP was oxidized. We present evidence that inactivation is due to oxidation of cysteine residues and consequent oligomerization through intermolecular disulfide bonds. The most susceptible cysteine residues to oxidation are Cys34, Cys112, and Cys119. Most, but not all, of the activity loss is restored by the reducing agent dithiothreitol. These findings elucidate a redox mechanism for regulation of PreP and also provide a rational basis for therapeutic intervention in conditions characterized by excessive oxidation of PreP.  相似文献   

8.
The coexistence of activated polymorphonuclear leukocytes and lymphocytes in tumor masses and inflammatory tissues suggests the possibility of interaction between secreted neutrophil products and nearby lymphocytes. To test this hypothesis, we examined the effects of neutrophil myeloperoxidase and H2O2 on lymphocytes. Human peripheral blood mononuclear leukocytes were exposed to myeloperoxidase, an H2O2-generating system (glucose + glucose oxidase), and a halide, and were then tested for functional activities. Natural killer activity against K562 cells, lymphocyte proliferation in response to mitogens, and generation of immunoglobulin-secreting cells were all susceptible to oxidative injury by myeloperoxidase and H2O2. The degree as well as the mechanism of suppression was dependent on the glucose oxidase concentration (i.e., the rate of H2O2 delivery). At low H2O2 flux, myeloperoxidase was essential for induction of lymphocyte suppression; as the rate of H2O2 generation increased, suppression became myeloperoxidase-independent and was mediated by H2O2 alone. Various lymphocyte functions were differentially susceptible to oxidative injury by myeloperoxidase and H2O2. The proliferative response to poke-weed mitogen was the least sensitive, whereas antibody formation was the most sensitive. Proliferative responses to concanavalin A and phytohemagglutinin as well as natural killer activity displayed intermediate degrees of susceptibility. In all assays, lymphocyte viability was greater than 90%. Removal of monocytes from mononuclear leukocytes by adherence to glass increased susceptibility of lymphocytes to oxidative injury. Monocytes in proportions within the range present in peripheral blood mononuclear leukocytes protected lymphocyte functions against oxidative injury by myeloperoxidase and H2O2. This study demonstrates a differential susceptibility of various immune functions to oxidative injury by the neutrophil products myeloperoxidase and H2O2, and shows, in addition, that monocytes can modulate these interactions.  相似文献   

9.
Reactive oxygen species (ROS) may act as signaling molecules in the physiology responses and the present study aims to investigate the effect of extracellular hydrogen peroxide on macrophages cellular response. The results obtained in the present study showed that the extracellular hydrogen peroxide affectively alter the membrane potential of the cell membrane and ion exchange channels in the cell membrane through intracellular NAD turnover that may lead to an intracellular calcium ion concentration alteration and subsequently induce the downstream signal activation.  相似文献   

10.
There is growing evidence that natural killer (NK) cells play an important role in immune surveillance against tumors and certain infections. The coexistence of activated neutrophils with lymphocytes in tumor masses and inflammatory tissues suggests the possibility of interaction between secreted neutrophil products and nearby lymphocytes. We examined the susceptibility of lymphocyte NK activity to oxidative injury by the neutrophil myeloperoxidase (MPO) system and H2O2 with the use of a cellfree model system. Exposure of human mononuclear leukocytes (MNL) to MPO, an H2O2-generating system (glucose + glucose oxidase), and a halide (C1- or I-) resulted in marked suppression of MNL-NK activity, as measured by 51Cr release from K562 tumor targets (p less than 0.001). This suppression was dependent on the presence and activity of each system component and was blocked by azide and catalase, but not by heated catalase. In spite of the marked functional suppression of NK activity, MNL viability was more than 95% and target binding frequency was not affected. NK suppression was reversible after 24 hr in culture. The mechanism of suppression was dependent on the amount and rate of H2O2 delivered, and on MNL number. MPO was essential when H2O2 flux was low or when MNL numbers were high. As H2O2 flux increased or MNL numbers decreased, NK suppression gradually became MPO-independent and was mediated by H2O2 alone. The ability of the MPO system to compromise lymphocyte NK function may explain the in vitro inhibition of NK activity of mixed cell populations by the tumor promoter phorbol esters, because these agents are potent stimulants for neutrophil secretion of MPO and H2O2. This study may also provide a possible mechanism for the reported in situ NK activity suppression by adherent phagocytic cells during carcinogenesis in both humans and animals.  相似文献   

11.
An in vitro model system was used to define the mechanism of interaction between human neutrophils and lymphocytes. Blood mononuclear leukocytes were exposed to purified neutrophils in the presence of a neutrophil-activating agent (phorbol ester, lectin, or opsonized particle). The treated mononuclear cells displayed a marked decrease in both natural killer activity and mitogen-dependent DNA synthesis, but no change in viability. This functional suppression was dependent on neutrophil number, stimulus concentration, and duration of exposure. Lymphocytes were protected by addition of catalase, but not superoxide dismutase. Neutrophils defective in oxidative metabolism (chronic granulomatous disease) failed to suppress lymphocyte function unless an H2O2-generating system, glucose oxidase plus glucose, was added. The patients' neutrophils provided a factor, possibly myeloperoxidase, which interacted with the glucose oxidase system. The immunosuppressive effect of normal neutrophils was diminished when chloride was omitted from the cultures and was enhanced when chloride was replaced by iodide. Myeloperoxidase-deficient neutrophils were partially defective in suppressing lymphocytes and this was corrected by addition of purified myeloperoxidase. Paradoxically, azide caused enhancement of suppression that depended on the neutrophil oxidative burst, but not on myeloperoxidase and was mediated at least in part by an effect of azide on the target mononuclear leukocytes. These data indicate that suppression of lymphocyte function by activated neutrophils is mediated by the secretion of myeloperoxidase and H2O2 that react with halides to form immunosuppressive products. Moreover, the mononuclear leukocytes contain an azide-sensitive factor, probably catalase, which provides partial protection against injury by neutrophil products. These dynamic interactions may be important local determinants of the immune response.  相似文献   

12.
The instability of human myeloperoxidase [EC 1.11.1.7] compound I, which was spontaneously reduced to compound II, and the abnormal stoichiometry of the reaction of myeloperoxidase with H2O2 were investigated. As to the former, a pretreatment of myeloperoxidase with H2O2 did not stabilize compound I, and no difference in its stability was observed between native (alpha 2 beta 2) and hemi (alpha beta) myeloperoxidase. From these results, it was thought that the instability of compound I was caused by neither the presence of endogenous donors nor the intramolecular reduction of compound I to compound II by the other heme in the native enzyme molecule. As for the latter, true catalase activity of myeloperoxidase was demonstrated by monitoring O2 evolution after the injection of H2O2 into the enzyme solution. Myeloperoxidase compound I reacted with H2O2 and returned to the ferric state with concomitant evolution of an O2 molecule. Accordingly, the abnormal stoichiometry of the reaction with H2O2 and a part of the instability of compound I can probably be ascribed to this true catalase activity.  相似文献   

13.
In human neutrophils, superoxide is generated primarily within specialized oxidant-producing intracellular compartments. The present study employs a simple methodological approach to evaluate the intracellular movement of these structures in living human neutrophils. Using a CCD camera system, we monitored fluorescence in cells loaded with the succinimidyl ester of dichlorodihydrofluorescein diacetate, which is nonfluorescent until oxidized by reactive oxygen species. Fluorescence-positive intracellular compartments became detectable after neutrophils were stimulated with phorbol myristate acetate for 1 min. Further stimulation increased the intracellular compartments in both number and size in a time-dependent manner. Upon stimulation with phorbol myristate acetate, no fluorescence was seen in intracellular compartments of neutrophils isolated from patients with X-linked chronic granulomatous disease lacking gp91-phox, a membrane component of NADPH oxidase. The method enables tracking of the movement of a single oxidant-producing intracellular compartment following cell stimulation and visualization of the intracellular structures formed by fusion of oxidant-producing intracellular compartments with endocytotic vesicles and phagosomes. Therefore, it is considered to be an informative tool for evaluation of the intracellular dynamics of oxidant-producing intracellular compartments in living human neutrophils and may have a diagnostic value.  相似文献   

14.
The elastase-inhibitory capacity of purified human alpha 1-antiproteinase is inactivated by low concentrations of the myeloperoxidase-derived oxidant hypochlorous acid, but much higher concentrations are required to inhibit the elastase-inhibitory capacity of serum samples. The protective effect of serum appears to be largely due to albumin. High concentrations of H2O2 also inactivate the elastase-inhibitory capacity of alpha 1-antiproteinase, by a mechanism not involving formation of hydroxyl radicals. Serum offers protection against H2O2 inactivation of alpha 1-antiproteinase. The relevance of these results to the tissue damage produced by activated phagocytes is discussed.  相似文献   

15.
Treatment of the Cu(II)-Fe(III) derivative of pig allantoic fluid acid phosphatase with hydrogen peroxide caused irreversible inactivation of the enzyme and loss of half of the intensity of the visible absorption spectrum. Phosphate, a competitive inhibitor, protected against this inactivation, suggesting that it occurred as a result of a reaction at the active site. The native Fe(II)-Fe(III) enzyme was irreversibly inactivated by H2O2 to a much smaller extent than the Cu(II)-Fe(III) derivative, whereas the Zn(II)-Fe(III) derivative was stable to H2O2 treatment. The rates of inactivation of the Cu(II)-Fe(III) and Fe(II)-Fe(III) enzymes in the presence of H2O2 were increased by addition of ascorbate. These results suggest involvement of a Fenton-type reaction, generating hydroxyl radicals which react with essential active site groups. Experiments carried out on the Fe(II)-Fe(III) enzyme showed that irreversible inactivation by H2O2 in the presence of ascorbate obeyed pseudo first-order kinetics. A plot of kobs for this reaction against H2O2 concentration (at saturating ascorbate) was hyperbolic, giving kobs(max) = 0.41 +/- 0.025 min-1 and S0.5(H2O2) = 1.16 +/- 0.18 mM. A kinetic scheme is presented to describe the irreversible inactivation, involving hydroxyl radical generation by reaction of H2O2 with Fe(II)-Fe(III) enzyme, reduction of the product Fe(III)-Fe(III) enzyme by ascorbate and reaction of hydroxyl radical with an essential group in the enzyme.  相似文献   

16.
The catalytic oxidation of [14C]-formate to 14CO2 was adapted to measure H2O2 formation in cellfree system. Standard curves employing glucose-glucose oxidase and xanthine-xanthine oxidase demonstrated linearity between 14CO2 evolution and enzyme concentration. A particulate fraction from human neutrophils was capable of oxidizing [14C]-formate; this reaction was dependent upon the presence of catalase, reduced pyridine nucleotide, and cellular material. Reaction increased with time of incubation and protein concentration, although not in a strictly linear fashion. The pH optimum was approximately 5.5 NADPH was a significantly better substrate than NADH, although both were capable of generating H2O2. The particulate fraction derived from phagocytizing cells was more active than a corresponding fraction from resting cells with either substrate. H2O2 production was abnormal in particulate fractions derived from 2 patients with chronic granulomatous disease. H2O2 production was markedly inhibited by superoxide dismutase or cytochrome c (scavengers of superoxide anion) but not by scavengers of singlet oxygen or hydroxyl radical. Reaction was greatly stimulated by the addition of manganous ion. These results are consistent with the hypothesis that the respiratory burst in human neutrophils is initiated by an oxidase that can utilize either NADPH or NADH but exhibits a marked preference for the former. Further, the inhibitor studies strongly support a mechanism involving an initial enzymatic reaction followed by a self-sustaining free radical reaction involving superoxide anion.  相似文献   

17.
The reaction of myeloperoxidase compound I (MPO-I) with chloride ion is widely assumed to produce the bacterial killing agent after phagocytosis. Two values of the rate constant for this important reaction have been published previously: 4.7 x 106 M-1.s-1 measured at 25 degrees C [Marquez, L.A. and Dunford, H.B. (1995) J. Biol. Chem. 270, 30434-30440], and 2.5 x 104 M-1.s-1 at 15 degrees C [Furtmüller, P.G., Burner, U. & Obinger, C. (1998) Biochemistry 37, 17923-17930]. The present paper is the result of a collaboration of the two groups to resolve the discrepancy in the rate constants. It was found that the rate constant for the reaction of compound I, generated from myeloperoxidase (MPO) and excess hydrogen peroxide with chloride, decreased with increasing chloride concentration. The rate constant published in 1995 was measured over a lower chloride concentration range; the 1998 rate constant at a higher range. Therefore the observed conversion of compound I to native enzyme in the presence of hydrogen peroxide and chloride ion cannot be attributed solely to the single elementary reaction MPO-I + Cl- --> MPO + HOCl. The simplest mechanism for the overall reaction which fit the experimental data is the following: MPO+H2O2 ⇄k-1k1 MPO-I+H2O MPO-I+Cl- ⇄k-2k2 MPO-I-Cl- MPO-I-Cl- -->k3 MPO+HOCl where MPO-I-Cl- is a chlorinating intermediate. We can now say that the 1995 rate constant is k2 and the corresponding reaction is rate-controlling at low [Cl-]. At high [Cl-], the reaction with rate constant k3 is rate controlling. The 1998 rate constant for high [Cl-] is a composite rate constant, approximated by k2k3/k-2. Values of k1 and k-1 are known from the literature. Results of this study yielded k2 = 2.2 x 106 M-1.s-1, k-2 = 1.9 x 105 s-1 and k3 = 5.2 x 104 s-1. Essentially identical results were obtained using human myeloperoxidase and beef spleen myeloperoxidase.  相似文献   

18.
The effects of 6-formylpterin on the impaired bactericidal activity of human neutrophils were examined ex vivo. When neutrophils isolated from fresh blood were incubated with 6-formylpterin, the intracellular production of hydrogen peroxide (H(2)O(2)) occurred. The H(2)O(2) generation by 6-formylpterin in neutrophils occurred in the presence of diphenyleneiodonium (DPI), an inhibitor of NADPH-oxidase. When neutrophils were incubated with DPI, the killing rate of catalase-positive bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), significantly decreased. This impaired bactericidal activity of the DPI-treated neutrophils was a mimic for chronic granulomatous disease (CGD). However, the killing rate of the DPI-treated neutrophils against E. coli and S. aureus significantly increased when 6-formylpterin was administered. Since 6-formylpterin intracellularly generates H(2)O(2) independent from the NADPH-oxidase, it was considered to improve the impaired bactericidal activity of the DPI-treated neutrophils. The use of 6-formylpterin may serve as an option of therapy for CGD.  相似文献   

19.
20.
Neutrophils and other phagocytes can injure cells by means of oxygen-dependent mechanisms, particularly the myeloperoxidase (MPO)-H2O2-halide system. The extent of such damage depends in part on the antioxidant defenses of the target cell. To facilitate the study of this phenomenon, we developed a model system in which we employed liposomes as targets for the myeloperoxidase system. The most useful species of liposomes employed 51Cr as the aqueous space marker and phosphatidyl choline with or without dicetyl phosphate and cholesterol as the structural lipid. Marker entrapment was established on the basis of 1) resolution of free from lipid-associated 51Cr by gel exclusion chromatography, 2) latency of 51Cr on rechromatography of detergent-treated liposomes, and 3) a correlation between entrapment and surface charge density. Exposure of liposomes to the complete MPO system resulted in release of 50 to 75% of the entrapped 51Cr. Release was abrogated by omission of myeloperoxidase or H2O2, heating of MPO, or addition of azide, cyanide, or catalase. Reagent H2O2 could be replaced by glucose plus glucose oxidase. Kinetic studies indicated a rapid process, lysis reaching half-maximal levels in less than 2 min. The addition of cyanide at various times interrupted lysis at once, indicating a requirement for ongoing myeloperoxidase-dependent reactions. Liposome disruption by the MPO system was pH dependent, increasing dramatically as pH was decreased from neutrality to 6.0. In the absence of halides, no lysis was observed. Maximum lysis was found with chloride at 10 to 100 mM, although at 1 mM concentrations, iodide, bromide, and thiocyanate were more active than chloride. Fluoride was inactive. Antagonism between halide species was demonstrated in that low concentrations of iodide or bromide inhibited the effect of optimal concentrations of chloride. Using 125I, we found that exposure of liposomes to the MPO system resulted in an association between iodide and liposomes; moreover, there was a close correspondence between this phenomenon and 51Cr release, suggesting that halogenation may be one mechanism of injury. These studies establish the usefulness of the liposome as a model of oxidant injury by a physiologically relevant system. They bear a striking parallel to work being done on MPO-mediated injury to eukaryotic and prokaryotic cells. By using this simplified model system, it should be possible to explore a number of determinants of target cell injury at a biochemical and molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号