首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coffin-Lowry syndrome (CLS) is an X-linked disorder characterized by severe psychomotor retardation, facial and digital dysmorphisms, and progressive skeletal deformations. By using a positional cloning approach, we have recently shown that mutations in the gene coding for the RSK2 serine-threonine protein kinase are responsible for this syndrome. To facilitate mutational analysis, we have now determined the genomic structure of the human RSK2 gene. The open reading frame of the RSK2 coding region is split into 22 exons. Primers were designed for PCR amplification of single exons from genomic DNA and subsequent single-strand conformation polymorphism analysis. We screened 37 patients with clinical features suggestive of CLS. Twenty-five nucleotide changes predicted to be disease-causing mutations were identified, including eight splice-site alterations, seven nonsense mutations, five frameshift mutations, and five missense mutations. Twenty-three of them were novel mutations. Coupled with previously reported mutations, these findings bring the total of different RSK2 mutations to 34. These are distributed throughout the RSK2 gene, with no clustering, and all but two, which have been found in two independent patients, are unique. A very high (68%) rate of de novo mutations was observed. It is noteworthy also that three mutations were found in female probands, with no affected male relatives, ascertained through learning disability and mild but suggestive facial and digital dysmorphisms. No obvious correlation was observed between the position or type of the RSK2 mutations and the severity or particular clinical features of CLS.  相似文献   

2.
Coffin-Lowry syndrome (CLS) is a syndromic form of X-linked mental retardation, characterized in male patients by psychomotor and growth retardation and various skeletal anomalies. CLS is caused by mutations in the RPS6KA3 gene, which encodes RSK2, a growth factor-regulated protein kinase. Cognitive deficiencies in CLS patients are prominent, but markedly variable in severity, even between siblings. However, the vast majority of patients are severely affected, with mental retardation ranging from moderate to profound. We used a RSK2-KO mouse model that shows no obvious brain abnormalities at the anatomical and histological levels to study the function of RSK2 in neurosecretion. Behavioral studies revealed normal motor coordination, but a profound retardation in spatial learning and a deficit in long-term spatial memory, providing evidence that RSK2 plays similar roles in mental functioning both in mice and human. We found that associative LTP at cortical inputs to the lateral amygdala was blocked in Rsk2 KO mice. Using an RNA interference rescue strategy in PC12 cells, we were able to demonstrate that RSK2 regulates catecholamine release through the phosphorylation of PLD. These results provide the first molecular evidence that RSK2 could regulate neurotransmitter release by activating PLD production of lipids required for exocytosis.  相似文献   

3.
Heterogeneous mutations in the X-linked gene RPS6KA3, encoding the protein kinase RSK2, are responsible for Coffin-Lowry Syndrome. Here we have further studied a male patient with a highly suggestive clinical diagnosis of CLS but in whom no mutation was found by exon sequencing. Western blot analysis revealed a protein much larger than the normal expected size. Sequencing of the RSK2 cDNA, showed the presence of an in-frame tandem duplication of exons 17–20. The mutated RSK2 protein was found to be inactive in an in-vitro kinase assay. This event, which was the result of a homologous unequal recombination between Alu sequences, is the first reported large duplication of the RPS6KA3 gene. Our finding provides further evidence that immunoblot analysis, or a molecular assay capable to detect large genomic mutational events, is essential for patients with a highly suggestive CLS clinical diagnosis but remaining without mutation after exon sequencing. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
6.
Lactic acidosis has been associated with a variety of clinical conditions and can be due to mutation in nuclear or mitochondrial genes. We performed mutations screening of all mitochondrial tRNA genes in 44 patients who referred as hyperlactic acidosis. Patients showed heterogeneous phenotypes including Leigh disease in four, MELAS in six, unclassified mitochondrial myopathy in 10, cardiomyopathy in five, MERRF in one, pure lactic acidosis in six, and others in 12 including facio-scaplo-femoral muscular dystrophy (FSFD), familial cerebellar ataxia, recurrent Reye syndrome, cerebral palsy with mental retardation. We measured enzymatic activities of pyruvate dehydrogenase complex, and respiratory chain enzymes. All mitochondrial tRNA genes and known mutation of ATPase 6 were studied by single strand conformation polymorphism (SSCP), automated DNA sequence and PCR-RFLP methods. We have found one patient with PDHC deficiency and six patients with Complex I+IV deficiency, though the most of the patients showed subnormal to deficient state of respiratory chain enzyme activities. We have identified one of the nucleotide changes in 29 patients. Single nucleotide changes in mitochondrial tRNA genes are found in 27 patients and one in ATPase 6 gene in two patients. One of four pathogenic point mutations (A3243G, C3303T, A8348G, and T8993G) was identified in 12 patients who showed the phenotype of Leigh syndrome, MELAS, cardimyopathy and cerebral palsy with epilepsy. Seventeen patients have one of the normal polymorphisms in the mitochondrial tRNA gene reported before. SSCP and PCR-RFLP could detect the heteroplasmic condition when the percentage of mutant up to 5, however, it cannot be observed by direct sequencing method. It is important to screen the mtDNA mutation not only by direct sequence but also by PCR-RFLP and the other sensitive methods to detect the heroplasmy when lactic acidosis has been documented in the patients who are not fulfilled the criteria of mitochondrial disorders.  相似文献   

7.
Follicle stimulating hormone (FSH) is important for controlling spermatogenesis through binding with its receptor. However, little information is available on mutations of the FSH and its receptor gene in infertile men. To study the genetic defects, which caused problems in spermatogenesis, we screened the point mutations of the FSH receptor gene in infertile men with high serum FSH concentrations. Seventy male infertile patients with high FHS levels (> 12 mIU/ml) were screened for mutations in each of the 10 exons of the FSH receptor gene, using genomic DNA PCR and a single-strand conformation polymorphism (SSCP) analysis. From this study, three shifted bands were detected by SSCP. The first shifted band was found in the PCR product of exon 4, including the exon-intron boundary sequence in only one patient. The sequence analysis revealed a nucleotide A to T substitution in intron 3 (IVS3-4A-->T). The second shifted band was detected in exon 10 with high frequency (33%). A nucleotide A to G substitution was found at the position of the 994th nucleotide, predicting a Thr to Ala substitution at the position of the 307th amino acid (Thr307Ala). The third shifted band in the 3' region of exon 10 was detected frequently in infertile patient and normal groups. It was tightly linked to the Thr307Ala variant. Thus, all of the abnormalities represent neutral polymorphisms, and not pathological mutations of the FSH receptor gene. In conclusion, we did not confirm that the genomic mutation of the FSH receptor is a major genetic cause in Korean infertile patients with high FSH levels.  相似文献   

8.
We screened 163 women from breast-ovarian cancer-prone families, as well as 178 individuals affected with breast and/or ovarian cancer but unselected for family history, for germ-line mutations in exon 2 of BRCA1, by SSCP analysis and direct sequencing. A total of 25 mutations were detected. Thirteen of 64 Jewish Ashkenazi women and 2 non-Jewish individuals were found to possess the 185delAG mutation. Haplotype data for all 15 individuals, with markers intragenic to BRCA1, suggest that the Jewish Ashkenazi individuals share a common ancestry that is distinct from the lineage shared by the other two women. These data provide the first evidence of two distinct lines of transmission for the 185delAG mutation, only one of which has its origins in the Jewish Ashkenazi population. Our screening also uncovered 10 affected individuals with an 11-bp deletion at nucleotide 188 of BRCA1 (188del11), 4 of whom are Ashkenazi Jews. This is only the third reported mutation detected within the Jewish Ashkenazi population and may represent the second most common alteration in BRCA1 found in Ashkenazi Jews in the United States. The observed overrepresentation of specific mutations within a subgroup of the general population may eventually contribute to the development of inexpensive and routine tests for BRCA1 mutations, as well as to the elucidation of other contributory factors (e.g., diet, environment, and chemical exposures) that may play a key role in cancer initiation and development. The implications of the mutational data, as well as the role that founder effect, demographic history, and penetrance play in the resulting observed phenomena, are discussed.  相似文献   

9.
Most sporadic cases of retinoblastoma, malignant eye tumor of children, may require the identification of a mutation of the retinoblastoma gene (RB1 gene) for precise genetic counseling. We established a mutation detection system of and screened for the RB1 gene mutation in 24 patients with retinoblastoma--12 bilateral patients and 12 unilateral patients. Mutation analysis was performed by PCR-mediated SSCP analysis in the entire coding region and promoter region, as an initial screening method, followed by direct genomic sequencing. Possible oncogenic mutations were identified in 14 (58%) of 24 tumors, of which 6 were single base substitutions, 4 were small deletions, 3 were small insertions, and 1 was a complex alteration due to deletion-insertion. A constitutional somatic mosaicism was suggested in one bilateral patient. A majority (57%) of mutations were found in E1A binding domains, and all were presumed to truncate the normal gene products. The mutation analysis presented here may provide a basis for the screening system of RB1 gene mutations in retinoblastoma patients.  相似文献   

10.
Large deletions in Xq21 often are associated with contiguous gene syndromes consisting of X-linked deafness type 3 (DFN3), mental retardation (MRX), and choroideremia (CHM). The identification of deletions associated with classic CHM or DFN3 facilitated the positional cloning of the underlying genes, REP-1 and POU3F4, respectively, and enabled the positioning of the MRX gene in between these genes. Here, we report the cloning and characterization of a novel gene, ribosomal S6-kinase 4 (RSK4; HGMW-approved symbol RPS6KA6), which maps in the MRX critical region. RSK4 is completely deleted in eight patients with the contiguous gene syndrome including MRX, partially deleted in a patient with DFN3 and present in patients with an Xq21 deletion and normal intellectual abilities. RSK4 is most abundantly expressed in brain and kidney. The predicted protein of 746 amino acids shows a high level of homology to three previously isolated members of the human RSK family. RSK2 is involved in Coffin-Lowry syndrome and nonspecific MRX. The localization of RSK4 in the interval that is commonly deleted in mentally retarded males together with the high degree of amino acid identity with RSK2 suggests that RSK4 plays a role in normal neuronal development. Further mutation analyses in males with X-linked mental retardation must prove that RSK4 is indeed a novel MRX gene.  相似文献   

11.
Previous studies of the molecular basis of 21-hydroxylase deficiency have shown four common gene conversion mutations in exons 7 and 8. Current molecular diagnostic protocols use allele-specific oligonucleotide hybridization (ASOH) to individually detect each of these mutations and the corresponding normal alleles. This method is costly, labor intensive, and may not provide quantitative results. To expedite molecular diagnosis in families with 21-hydroxylase deficiency, we have designed and implemented single-strand conformational polymorphism (SSCP) analysis. We applied SSCP analysis to 12 families in whom mutations in exons 7 or 8 had been previously identified by ASOH. Using a single polymerase chain reaction (PCR) amplification, unique conformers can be assigned to three mutations: V281L, Q318X, and R356W. The fourth mutation, T insertion at nucleotide 1761, was detected by heteroduplex analysis of the same PCR product. Thus, we were able to identify all four mutations using a single PCR product on a single gel.  相似文献   

12.
The myelin protein zero gene (MPZ) coding for the most abundant protein of the peripheral myelin was shown to be mutated in Charcot-Marie-Tooth type 1B disease (CMT1B). Later on MPZ mutations have been shown in axonal type of CMT (CMT2). Recently three novel MPZ gene mutations were reported in congenital hypomyelinating neuropathy (CHN). In contrast to the previously reported studies, focused on CMT1B disease, we aimed to analyze the coding and promoter sequences of the MPZ gene in a group of patients with three CMT phenotypes i.e.: CMT1, CMT2 and CHN. Over 500 PCR products were screened by single strand conformation polymorphism analysis (SSCP) and heteroduplex analysis (HA). In one CMT2 family we founded the E56K mutation in the MPZ gene and in one CHN patient the T124K substitution was detected. In agreement with previously reported studies we conclude that MPZ gene screening should be performed for wide phenotype spectrum of CMT.  相似文献   

13.
Coffin–Lowry syndrome (CLS) is a syndromic form of mental retardation caused by loss of function mutations in the X-linked RPS6KA3 gene, which encodes RSK2, a serine/threonine kinase acting in the MAPK/ERK pathway. The mouse invalidated for the Rps6ka3 (Rsk2-KO) gene displays learning and long-term spatial memory deficits. In the current study, we compared hippocampal gene expression profiles from Rsk2-KO and normal littermate mice to identify changes in molecular pathways. Differential expression was observed for 100 genes encoding proteins acting in various biological pathways, including cell growth and proliferation, cell death and higher brain function. The twofold up-regulated gene (Gria2) was of particular interest because it encodes the subunit GLUR2 of the AMPA glutamate receptor. AMPA receptors mediate most fast excitatory synaptic transmission in the central nervous system. We provide evidence that in the hippocampus of Rsk2-KO mice, expression of GLUR2 at the mRNA and at the protein levels is significantly increased, whereas basal AMPA receptor-mediated transmission in the hippocampus of Rsk2-KO mice is significantly decreased. This is the first time that such deregulations have been demonstrated in the mouse model of the Coffin–Lowry syndrome. Our findings suggest that a defect in AMPA neurotransmission and plasticity contribute to mental retardation in CLS patients.  相似文献   

14.
Large deletions in Xq21 often are associated with contiguous gene syndromes consisting of X-linked deafness type 3 (DFN3), mental retardation (MRX), and choroideremia (CHM). The identification of deletions associated with classic CHM or DFN3 facilitated the positional cloning of the underlying genes, REP-1 and POU3F4, respectively, and enabled the positioning of the MRX gene in between these genes. Here, we report the cloning and characterization of a novel gene, ribosomal S6-kinase 4 (RSK4; HGMW-approved symbol RPS6KA6), which maps in the MRX critical region. RSK4 is completely deleted in eight patients with the contiguous gene syndrome including MRX, partially deleted in a patient with DFN3 and present in patients with an Xq21 deletion and normal intellectual abilities. RSK4 is most abundantly expressed in brain and kidney. The predicted protein of 746 amino acids shows a high level of homology to three previously isolated members of the human RSK family. RSK2 is involved in Coffin–Lowry syndrome and nonspecific MRX. The localization of RSK4 in the interval that is commonly deleted in mentally retarded males together with the high degree of amino acid identity with RSK2 suggests that RSK4 plays a role in normal neuronal development. Further mutation analyses in males with X-linked mental retardation must prove that RSK4 is indeed a novel MRX gene.  相似文献   

15.
Leber遗传性视神经病变家系的线粒体基因突变分析   总被引:5,自引:0,他引:5  
林玲  陈贻锴  童绎  郑志竑  林建银  朱进伟 《遗传》2003,25(3):267-270
为探讨Leber遗传性视神经病变(Leber′s hereditary optic neuropathy,LHON)家系线粒体DNA(mtDNA)常见致病原发突变的频谱,用聚合酶链反应(polymerase chain reaction,PCR)和单链构象多态性(single-stranded conformational polymorphism,SSCP)以及DNA测序的方法,对13个家系22位临床诊断为LHON的患者及其母系亲属21人的线粒体DNA进行检测,同时检测71例正常人作为对照。临床拟诊为LHON的13个家系中,11个家系存在mtDNA位点11778 G→A突变,另2个家系存在14484位点T→C突变。说明中国LHON病人存在线粒体DNA 11778或14484位点突变,其中14484位点突变在国内尚未见报道。 Abstract:The purpose of the study is to investigate the frequency of common pathogenic primary mitochondrial DNA mutations in pedigrees of Leber′s hereditary optic neuropathy (LHON).Mutations were determined by polymerase chain reaction (PCR),single-stranded conformational polymorphism (SSCP) and DNA sequencing.Twenty-two patients with suspicion of LHON and twenty-one their maternal relatives underwent molecular genetic evaluation.Seventy-one normal individuals underwent molecular genetic evaluation as control at the same time.Members from 13 families with suspicion of LHON,11 families had nucleotide position nt11778 G→A mutations.Another 2 families had nt14484 T→C mutations.It is concluded that the point mutations at nucleotides 11778 and 14484 are primary LHON mutations,but the point mutation of nt14484 is rare in Chinese.  相似文献   

16.
Tuberous sclerosis (TSC) is a relatively common hamartoma syndrome caused by mutations in either of two genes, TSC1 and TSC2. Here we report comprehensive mutation analysis in 224 index patients with TSC and correlate mutation findings with clinical features. Denaturing high-performance liquid chromatography, long-range polymerase chain reaction (PCR), and quantitative PCR were used for mutation detection. Mutations were identified in 186 (83%) of 224 of cases, comprising 138 small TSC2 mutations, 20 large TSC2 mutations, and 28 small TSC1 mutations. A standardized clinical assessment instrument covering 16 TSC manifestations was used. Sporadic patients with TSC1 mutations had, on average, milder disease in comparison with patients with TSC2 mutations, despite being of similar age. They had a lower frequency of seizures and moderate-to-severe mental retardation, fewer subependymal nodules and cortical tubers, less-severe kidney involvement, no retinal hamartomas, and less-severe facial angiofibroma. Patients in whom no mutation was found also had disease that was milder, on average, than that in patients with TSC2 mutations and was somewhat distinct from patients with TSC1 mutations. Although there was overlap in the spectrum of many clinical features of patients with TSC1 versus TSC2 mutations, some features (grade 2-4 kidney cysts or angiomyolipomas, forehead plaques, retinal hamartomas, and liver angiomyolipomas) were very rare or not seen at all in TSC1 patients. Thus both germline and somatic mutations appear to be less common in TSC1 than in TSC2. The reduced severity of disease in patients without defined mutations suggests that many of these patients are mosaic for a TSC2 mutation and/or have TSC because of mutations in an as-yet-unidentified locus with a relatively mild clinical phenotype.  相似文献   

17.
We report the development of a simple and inexpensive assay for the detection of DNA polymorphisms and mutations that is based on the modification of mismatched bases by potassium permanganate. Unlike the chemical cleavage of mismatch assay, which also exploits the reactivity of potassium permanganate to detect genomic variants, the assay we describe here does not require a cleavage manipulation and therefore does not require expensive or toxic chemicals or a separation step, as mismatches are detected using direct optical methods in a microplate format. Studies with individual deoxynucleotides demonstrated that the reactivity with potassium permanganate resulted in a specific colour change. Furthermore, studies with synthetic oligonucleotide heteroduplexes demonstrated that this colour change phenomenon could be applied to detect mismatched bases spectrophotometrically. A collection of plasmids carrying single point mutations in the mouse β-globin promoter region was used as a model system to develop a functional mutation detection assay. Finally, the assay was validated as 100% effective in detecting mismatches in a blinded manner using DNA from patients previously screened for mutations using established techniques, such as sequencing, SSCP and denaturing high-performance liquid chromatography (DHPLC) analysis in DNA fragments up to 300 bp in length.  相似文献   

18.
Familial hypercholesterolemia (FH) is an autosomal semi-dominant disorder caused by defects in the low density lipoprotein receptor (LDLR) gene and is a well-documented risk factor for developing cardiovascular disease. The LDLR genes of five Swedish children with FH were examined in this study. Initial mutation screening was performed by denaturing gradient gel electrophoresis (DGGE) with enzymatically amplified exon-sized fragments, each containing a tailing GC-rich requence. The GC-clamped fragments had been synthesized with a restriction site adjacent to the intron-corresponding sequence to allow detachment of the clamps, thereby rendering the fragments suitable for subsequent analysis by single-strand conformation polymorphism (SSCP) analysis of samples from patients with no DGGE-detectable mutations. In addition, all the LDLR genes of the patients were screened for large alterations by restriction fragment length polymorphism analysis. Following this strategy, seven different, potentially disease-causing mutations were detected in the five children with FH. Six of the alterations, five single-base substitutions and one dinucleotide deletion, have not previously been described. DGGE detected six of the mutations and SSCP the seventh.  相似文献   

19.
Mutation analysis of Taiwanese Wilson disease patients   总被引:5,自引:0,他引:5  
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper-transporting ATPase (ATP7B). In the present study, we report a molecular diagnosis method to screen the WD chromosome in patients or in heterozygotic carriers in Taiwan. Exons 8, 11, 12, 13, 16, 17, and 18 of ATP7B are selected for the screening of mutations. The most common mutation, Arg778Leu or Arg778Gln, was first screened by PCR-RFLP then we combined single-stranded conformation polymorphism (SSCP) analysis followed by direct DNA sequencing on the DNA fragments with mobility shift on SSCP analysis. The diagnostic rate was compared with standard ATP7B whole gene sequencing analysis. Ten different mutations were identified among 29 WD patients; among them four were novel (Ala1168Pro, Thr1178Ala, Ala1193Pro, and Pro1273Gln). The false positive rates were tested against 100 normal individuals and listed as follows: exon 8: 5%; exon 11: 4%; exon 12: 6%; exon 13: 5%; exon 16: 5%; exon 17: 3%; exon 18: 4%. The Arg778Leu mutation exhibited the highest allelic frequency (43.1%). The detection rate of WD chromosomes is 65.52%, which is as sensitive as whole gene sequencing scanning. According to our results, WD chromosomes in Taiwan are predominantely located at exons 8, 11, 12, 13, 16, 17, and 18. The standard sequencing analysis on the entire gene is time consuming. We recommend screening these 7 exons first on those individuals who have a higher risk in having WD, before whole gene and promoter sequencing analysis in Taiwan.  相似文献   

20.
X-linked retinitis pigmentosa (XLRP) results from mutations in a number of loci, including RP2 at Xp11.3, and RP3 at Xp21.1. RP2 and RP3 genes have been identified by positional cloning. RP2 mutations are found in about 10% of XLRP patients. We performed a mutational screening of RP2 gene inpatients belonging to seven unrelated families in linkage with the RP2 locus. SSCP analysis detected three conformation variants, within exon 2 and 3. Direct sequencing of exon 2, disclosed a G-->A transition at nucleotide 449 (W150X), and a G-->T transversion in position 547 (E183X). Sequence analysis of exon 3 variant revealed an insertion (853/854insG), leading to a frameshift. In this patient, we detected an additional sequence alteration (A-->G at nucleotide 848, E283G). Each mutation was co-segregating with the disease in the affected family members available for the study. These mutations are expected to introduce a stop codon within the RP2 coding sequence probably resulting in a truncated or unstable protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号