首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2-oxoglutarate dehydrogenase complex was succinylated using 2-oxo[5-14C]glutarate in the presence of N-ethylmaleimide to label the lipoic acid cofactor of the transuccinylase (E2) component. Following peptic digestion, 14C-lipoate-containing peptides were purified and subjected to automated Edman degradation and amino acid analysis. The amino acid sequence surrounding the lipoyllysine residue is reported.  相似文献   

2.
1. The effect of the branched-chain amino acids, namely leucine, isoleucine and valine and their corresponding 2-oxo acids on the metabolism of 2-oxoglutarate by developing rat and human brain preparations was investigated. 2. The decarboxylation of 2-oxo[1-(14)C]glutarate to (14)CO(2) by mitochondria from adult rat brain was inhibited by the branched-chain 2-oxo acids whereas the branched-chain amino acids had no inhibitory effect on this process. 3. The activity of 2-oxoglutarate dehydrogenase complex was about 0.2unit/g of brain from 2-day-old rats and increased by about fourfold reaching an adult value by the end of the third postnatal week. 4. The K(m) value for 2-oxoglutarate of the 2-oxoglutarate dehydrogenase complex in rat and human brain was 100 and 83mum respectively. 5. The branched-chain 2-oxo acids competitively inhibited this enzyme from suckling and adult rats brains as well as from foetal and adult human brains, whereas the branched-chain amino acids had no effect on this enzyme. 6. Approximate K(i) values for the branched-chain 2-oxo acids found for this enzyme were in the range found for these 2-oxo acids in plasma from patients with maple-syrup-urine disease. 7. The possible significance of the inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in brains of untreated patients with maple-syrup-urine disease is discussed in relation to the energy metabolism and the biosynthesis of lipids from ketone bodies.  相似文献   

3.
Metabolism of branched-chain amino and 2-oxo acids was studied in the isolated perfused kidney. Significant amounts of 2-oxo acids were released by perfused kidney with all concentrations of amino acids tested (0.1-1.0 mM each), despite the high activity of branched-chain 2-oxo acid dehydrogenase in kidney. As perfusate valine concentration was increased from 0.2 to 1.0 mM, [1-14C]valine transamination (2-oxo acid oxidized + released) increased roughly linearly; [1-14C]valine oxidation, however, increased exponentially. Increasing perfusate concentration of 3-methyl-2-oxo[1-14C]butanoate from 0 to 1.0 mM resulted in a linear increase in the rate of its oxidation and a rise in perfusate valine concentration; at the same time significant decreases occurred in perfusate isoleucine and leucine concentrations, with corresponding increases in rates of release of their respective 2-oxo acids. Comparison of rates of oxidation of [1-14C]valine and 3-methyl-2-oxo[1-14C]butanoate suggests that 2-oxo acid arising from [1-14C]valine transamination has freer access to the 2-oxo acid dehydrogenase than has the 2-oxo acid from the perfusate. The observations indicate that, when branched-chain amino and 2-oxo acids are present in perfusate at near-physiological concentrations, rates of transamination of the amino and 2-oxo acids by isolated perfused kidney are greater than rates of oxidation.  相似文献   

4.
The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TCA-cycle-related pathways. Results of this study indicated that the ratio of 14CO2 produced from [1,4-14C]succinate to 14CO2 produced from [2,3-14C]succinate was increased by the addition of glutamine (5 mM) to the medium. An increase in the succinate CO2 ratio is quantitatively related to an increased flux of unlabelled carbon into the TCA-cycle-intermediate pools. Analysis of 14C distribution in [14C]citrate derived from [2,3-14C]succinate indicated that flux from the TCA cycle to the acetyl-CoA-derived carbons of citrate was insignificant. Thus the increased succinate CO2 ratio observed in the presence of glutamine could only result from an increased flux of carbon into the span of the TCA cycle from citrate to oxaloacetate. This result is consistent with increased flux of glutamine to alpha-oxoglutarate in the incubation medium containing exogenous glutamine. Comparison of the pyruvate CO2 ratio, steady-state 14CO2 production from [2-14C]pyruvate versus [3-14C]pyruvate, with the succinate 14CO2 ratio detected flux of pyruvate to C4 TCA-cycle intermediates in the medium containing glutamine. This result was consistent with the observation that [14C]aspartate derived from [2-14C]pyruvate was labelled in C-2 and C-3. 14C analysis also produced evidence for flux of TCA-cycle carbon to alanine. This study demonstrates that the CO2-ratios method is applicable in the analysis of the metabolic properties of AS-30D cells. This methodology has verified that the atypical TCA-cycle metabolism previously described for AS-30D-cell mitochondria occurs in intact AS-30D rat hepatoma cells.  相似文献   

5.
At 0.1 mM 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate plots of the reciprocal of the rate of 14CO2 formation by branched-chain 2-oxo acid dehydrogenase complex in mitochondria vs alpha-cyanocinamate concentration were linear up to high inhibitor concentrations, indicating that the monocarboxylate carrier-mediated transport was the rate-limiting step. At low (0.025 mM) concentration of 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate the 1/v vs I plots became nonlinear indicating that the branched-chain 2-oxo acid dehydrogenase activity determined the rate of 14CO2 formation. Inhibition of branched-chain 2-oxo acid dehydrogenase complex by clofibric acid or arsenite showed that at 0.1 mM 2-oxoisovalerate the activity of the complex became the rate-limiting step of the pathway. The availability of the 2-oxoisocaproate or 2-oxoisovalerate seems to affect the phosphorylation and the activity of the branched-chain 2-oxo acid dehydrogenase complex only at low, physiological concentrations of these substrates (less than 0.025 mM).  相似文献   

6.
1. Two bacteria, a Bacillus sp. and a Nocardia sp. (strain Z1) were isolated from soil by enrichment with 0.1 percent (v/v) pyridine and grew rapidly on this compound as sole C, N and energy source. The monohydroxypyridines, tetrahydropyridine, piperidine and some other analogues were not utilized for growth or oxidized by washed suspensions of either bacterium. 2. Cell-free extracts were unable to metabolize pyridine even after supplementation with a variety of cofactors or protecting agents. Treatment of cells with toluene led to rapid loss of the ability to oxidize pyridine. 3. In the presence of 10mM-semicarbazide at pH 6.0, Nocardia Z1 accumulated a semialdehyde idenditied as its 2,4-dinitrophenylhydrazone by chromatography, mixed melting point, mass spectrometry and isotope trapping from [2,6(-14)C]pyridine as glutarate semialdehyde. 4. Extracts of this bacterium prepared from cells grown with pyridine or exposed to the gratuitous inducer 2-picoline, contained high activities of a specific glutarate semialdehyde dehydrogenase. 5. Cells grown with pyridine or glutarate also contained a glutaric dialdehyde dehydrogenase, an acyl-CoA synthetase and elevated amounts of isocitrate lyase but no glutaryl-CoA dehydrogenase. 6. Bacillus 4 accumulated in the presence of 10mM-semicarbazide several acidic carbonyl compounds from pyridine among which was succinate semialdehyde. Extracts of this bacillus after growth of the cells with pyridine contained an inducible succinate semialdehyde dehydrogenase in amounts at least 50-fold over those found in succinate-grown cells. 7. Two mutants of this bacillus, selected for their inability to grow on pyridine were deficient in succinate semialdehyde dehydrogenase. 8. In the presence of 0.2mM-KCN, washed suspensions of Bacillus 4 accumulated formate and possibly formamide from pyridine. The use of [14C]pyridine showed that formate was derived from C-2 of the pyridine ring. 9. The organism had a specific formamide amidohydrolase cleaving formamide quantitatively to formate and NH3. 10. Formate was further oxidized by the particle fraction. There was no soluble formate dehydrogenase in extracts.  相似文献   

7.
Alpha-ketoglutarate metabolism by cytochrome-containing anaerobes   总被引:1,自引:0,他引:1  
During growth in the presence of tracer amounts of exogenously supplied alpha-keto[1-14C]glutarate (AKG) or alpha-keto [5-14C]glutarate, cytochrome-containing Bacteroides fragilis strain 2044 and Bacteroides vulgatus strain 8482 incorporated extremely small amounts of radioactivity into cell macromolecules and protoheme. Under identical conditions, Bacteroides "l" strain 7CM and Bacteroides buccae strain J1 incorporated substantial label from [5-14C]AKG, but not [1-14C]AKG, into cellular macromolecules and protoheme. Bacteroides succinogenes strain S85 incorporated radioactivity from both [1-14C]AKG and [5-14C]AKG into cell macromolecules, but only label from [5-14C]AKG appeared in protoheme. Selenomonas ruminantium strain HD1 and Butyrivibrio fibrisolvens strain D1, both of which are devoid of cytochromes, incorporated substantial label from both [1-14C]AKG and [5-14C]AKG into cell macromolecules, but failed to incorporate label from either position into protoheme. Bacteroides ruminicola sp. brevis strain GA33 incorporated label from both [1-14C]AKG and [5-14C]AKG into both cell macromolecules and protoheme. A substantial portion of the heme synthesized by this organism may be formed by the "plant" pathway involving the intact use of the AKG carbon skeleton. Major differences exist in the manner and extent of AKG utilization among cytochrome-containing anaerobes and between these organisms and bacteria devoid of cytochromes obtained from similar environments.  相似文献   

8.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

9.
Binding of 4-methyl-2-oxo[1-14C]valerate to defatted bovine serum albumin inhibited the utilization of this 2-oxo acid by fed-rat hepatocytes in vitro. With 0-50g of albumin/l in the presence of 0.05mM 2-oxo acid or on increasing the 2-oxo acid concentration from 0 to 2mM in the presence of 26g of albumin/l, the extent of inhibition was essentially dependent on the change in the free 2-oxo acid concentration. Intrahepatocyte 4-methyl-2-oxo[1-14C]valerate concentrations were similar to extracellular free 2-oxo acid concentrations, suggesting equilibration so that the plasma membrane appears not to be rate-limiting for the utilization of this substrate by the isolated liver cells.  相似文献   

10.
In vitro rates of conversion of [1-14C]leucine to 4-methyl-2-oxo[1-14C]pentanoate and of oxidation of [1-14C] and [U-14C]leucine were measured for tissues from fed and starved (5 days) sheep. Slices of liver and kidney and preparations of adipose tissue and of fibre bundles of external intercostal muscle (EIC) were used. Skeletal muscle is likely the major site of leucine catabolism in sheep although adipose tissue is capable of substantial metabolism. Muscle and adipose tissue from fed sheep released 17 and 5% of the [1-14C]leucine transaminated as 4-methyl-2-oxo-[1-14C]pentanoate and upon starvation the proportions were increased (P less than 0.001) to 46 and 32%. Starvation reduced (P less than 0.01) leucine catabolism in all tissues except the kidney. The pattern of leucine catabolism in EIC muscle changed from extensive oxidation in the fed state to being limited essentially to transamination and decarboxylation in the starved state.  相似文献   

11.
The C-5 of 5-aminolaevulinate, a tetrapyrrole precursor which accumulates when inhibitory laevulinate is present, is derived from either the C-2 of glycine by the 5-aminolaevulinate-synthase-mediated Shemin pathway or the C-1 of 2-oxoglutarate by the C5 pathway. Thin-layer-radiochromatographic procedures are described for determining whether [2-14C]glycine or 2-[1-14C]oxoglutarate labelled the macrocycle of bacteriochlorophyll a, in addition to or rather than the methyl ester or phytyl ester moieties of the side-chains. The method was also used for detecting whether the same substrates label the formaldehyde (C-5) or the succinate (C-1 to C-4) fragments, obtained by periodate cleavage of 5-aminolaevulinate. These methods therefore can readily distinguish between the Shemin and C5 pathways as was demonstrated by using Rhodopseudomonas spheroides and Zea mays (maize), respectively, as examples of each pathway. Both [2-14C]glycine and, to a lesser extent 2-[1-14C]oxoglutarate labelled the macrocycle of bacteriochlorophyll a formed during adaptation of respiring R. spheroides cells to photosynthetic (anaerobic, illuminated) conditions. This and earlier evidence suggested augmentation of the Shemin pathway by a minor C5 pathway contribution. The present studies revealed only Shemin pathway activity: with laevulinate present, [2-14C]glycine formed 5-[5-14C]aminolaevulinate as proved by H14CHO production during periodate cleavage. These methods were sufficiently sensitive also to detect the incorporation of 14CO2, from degradation of either substrate, into 5-aminolaevulinate via the Shemin pathway thus labelling the succinate fragment produced with periodate: this explains bacteriochlorophyll a labelling by 2-[1-14C]oxoglutarate and proves double labelling of 5-aminolaevulinate by [2-14C]glycine. The same techniques were applied to etiolated maize leaves exposed to aerobic illuminated conditions with laevulinate and either 2-[1-14C]oxoglutarate or [2-14C]glycine as substrates. Only the C5 pathway was detected: 2-[1-14C]oxoglutarate was converted to 5-[5-14C]aminolaevulinate, which yielded H14CHO on periodate cleavage. This is not inconsistent with our earlier 13C-NMR studies [Porra, R.J., Klein, O. and Wright, P. E. (1983) Eur. J. Biochem. 130, 509-516] showing that the C5 pathway formed all the 5-aminolaevulinate for chlorophyll biosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Oxidative determination of 14C-labeled 2-oxo acids   总被引:2,自引:0,他引:2  
A simple and rapid assay for the determination of 1-14C- or U-14C-labeled 2-oxo acids is described. It is based on the selective and complete oxidation of the carboxyl group to 14CO2. Preceding purification procedures are not necessary. In rat hindlimb perfusion studies, the procedure was used to develop an indirect method for the estimation of the intracellular dilution of [1-14C]pyruvate and to determine the relationship between the transamination and decarboxylation rates of leucine in the perfused tissue by the use of tracer doses of L-[1-14C]leucine.  相似文献   

13.
A procedure is described to convert rates of (14)CO(2) production into rates of mitochondrial acetyl-CoA production from a (14)C-labelled substrate. The principle is illustrated in perfused rat liver and kidney by the differential yield of (14)CO(2) from 4-methyl-2-oxo[1-(14)C]valerate and 4-methyl-2-oxo[2-(14)C]valerate.  相似文献   

14.
4-Hydroxypentanoic acid alanine thioether was synthesized and characterized by n.m.r. spectroscopy. This derivative corresponded to the modified amino acid obtained by allowing 5-chloro-4-oxo[3,5-3H]pentanoic acid to react with rabbit muscle pyruvate kinase. Performic acid oxidation of 4-oxo[3,5-3H]pentanoic acid alanine thioether in pyruvate kinase gave [3H]succinate (67%) and [3H]carboxymethylcysteine (33%) as expected. Evidence is presented to show that NaBH4 reduction followed by periodate oxidation and analysis of radioactive formaldehyde production may provide a convenient method for distinguishing between thiol and amino alkylation by halogenomethyl ketone compounds. Peptide 'mapping' confirms that the modification by 5-chloro-4-oxopentanoic acid occurs primarily at one region of pyruvate kinase.  相似文献   

15.
The interactions between fatty acid oxidation and the oxidation of the 2-oxo acids of the branched chain amino acids were studied in the isolated Langendorff-perfused heart. 2-Oxoisocaproate inhibited the oxidation of oleate, but 2-oxoisovalerate and 2-oxo-3-methylvalerate did not. This difference was not attributable to the magnitude of the flux through the branched chain 2-oxo acid dehydrogenase, which was slightly higher with 2-oxoisovalerate than with 2-oxoisocaproate. Oxidation of 2-oxoisocaproate in the perfused heart was virtually complete, since more than 80% of the isovaleryl-CoA formed from 2-oxo[1-14C]isocaproate was further metabolized to CO2, as determined by comparing 14CO2 production from 2-oxo[14C(U)]isocaproate with that from the 1-14C-labelled compound. Only twice as much 14CO2 was produced from 2-oxo[14C(U)]isovalerate as from the 1-14C-labelled compound, indicating incomplete oxidation. This was confirmed by the accumulation in the perfusion medium of substantial quantities of labelled 3-hydroxyisobutyrate (an intermediate in the pathway of valine catabolism), when hearts were perfused with 2-oxo[14C(U)]isovalerate. The failure of 2-oxoisovalerate to inhibit fatty acid oxidation, then, can be attributed to the fact that its partial metabolism in the heart produces little ATP. We have previously shown that 3-hydroxyisobutyrate is a good gluconeogenic substrate in liver and kidney, and postulate that 3-hydroxyisobutyrate serves as an interorgan metabolite such that valine can serve as a glucogenic amino acid, even when its catabolism proceeds beyond the irreversible 2-oxo acid dehydrogenase in muscle.  相似文献   

16.
Rat liver hepatocytes isolated from a 30-31% percoll density gradient at 10,000g are refractory toward insulin stimulation of 14CO2 formation and 14C-incorporation into protein from [2,3-14C]succinate. Basal hepatocyte oxidation of succinate was not impaired by the presence of 5% percoll in the incubation medium nor was it impaired when percoll-free hepatocytes were used that had been isolated after centrifugation at 9000g; however, in both instances the stimulatory effect of insulin was lost. Hepatocyte damage may have occurred in these processes. This is in contrast to previous work which shows that insulin (10 mU/ml) will stimulate [2,3-14C]succinate oxidation and [2,3-14C]succinate carbon incorporation into protein in non-percoll-treated hepatocytes (isolated by centrifugation at 10g) by about 29%. We conclude that the latter procedure although more time consuming is the more gentle method of choice and leaves the hepatocyte in a form more closely related to an in vivo state than does treatment with a percoll density gradient at 10,000g.  相似文献   

17.
1. The mechanism of regeneration of glycine during the growth of Pseudomonas AM1 on C(1) compounds has been investigated by brief incubation of bacterial suspensions with [2,3-(14)C(2)]succinate and observing the incorporation of radioactivity into various metabolites. 2. With the wild-type organism growing on methanol, radioactivity appeared rapidly in glycine and tricarboxylic acid-cycle intermediates, but there was a relatively slow labelling of serine and phosphorylated compounds. Serine became labelled predominantly in the C-2 position. 3. The proportion of radioactivity incorporated into glycine at earliest times was greatly diminished when succinate-grown cells were used. 4. Radioactivity was also incorporated from [2,3-(14)C(2)]succinate into glycine and serine by methanol-grown mutant 20S, which lacks phosphoserine phosphohydrolase. Both the glycine and serine were labelled mainly in C-2. 5. The formation of predominantly [2-(14)C]serine from [2,3-(14)C(2)]succinate in wild-type Pseudomonas AM1, and of [2-(14)C]serine and [2-(14)C]glycine in the mutant lacking the phosphorylated pathway from succinate to serine, is taken as strong evidence for a mechanism of glycine regeneration involving cleavage of a C(4) skeleton between C-2 and C-3, rather than by a direct combination of two C(1) units derived from the growth substrate. 6. The cleavage mechanism is quantitatively more significant during growth on methanol than on succinate.  相似文献   

18.
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.  相似文献   

19.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

20.
Untransformed diploid skin fibroblasts from eight normal adults, aged 24 to 74 years, catabolized several 14C-labeled substrates less effectively than cells from ten normal male infants. 14C-labeled substrate metabolism was quantitated either by measuring the evolution of 14CO2 from the 14C-labeled compounds or the incorporation of 14C into cellular protein via transamination of tricarboxylic acid cycle intermediates derived from the 14C-labeled substrates. With these methods, adult cells catabolized [1-14C]butyrate, [1-14C]octanoate, and 1-[2-14C]leucine at rates 44 to 64% of those found in infant cells. The oxidation of [1,4-14C]succinate and [U-14C]malate was identical in both infant and adult cells, while [2,3-14C]succinate catabolism was mildly decreased in adult cells (65-80% of control). These observations parallel those made in rat tissues and confirm that the same phenomenon occurs in cultured human fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号