首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
An understanding of how the heme-deficient gram-positive bacterium Streptococcus pyogenes establishes infections in O(2)-rich environments requires careful analysis of the gene products important in aerobic metabolism. NADH oxidase (NOXase) is a unique flavoprotein of S. pyogenes and other lactic acid bacteria which directly catalyzes the four-electron reduction of O(2) to H(2)O. To elucidate a putative role for this enzyme in aerobic metabolism, NOXase-deficient mutants were constructed by insertional inactivation of the gene that encodes NOXase. Characterization of the resulting mutants revealed that growth in rich medium under low-O(2) conditions was indistinguishable from that of the wild type. However, the mutants were unable to grow under high-O(2) conditions and demonstrated enhanced sensitivity to the superoxide-generating agent paraquat. Mutants cultured in liquid medium under conditions of carbohydrate limitation and high O(2) tension were characterized by an extended lag phase, a reduction in growth, and a greater accumulation of H(2)O(2) in the growth medium compared to the wild-type strain. All of these mutant phenotypes could be overcome by the addition of glucose. Either the addition of catalase to the culture medium of the mutants or the introduction of a heterologous NADH peroxidase into the mutants eliminated the accumulation of H(2)O(2) and rescued the growth defect of the mutants under high-O(2) conditions in carbohydrate-limited liquid medium. Taken together, these data show that NOXase is important for aerobic metabolism and essential in environments high in O(2) with carbohydrate limitation.  相似文献   

8.
Very few studies have so far been dedicated to the systematic analysis of protein interactions occurring between surface and/or secreted proteins in bacteria. Such interactions are expected to play pivotal biological roles that deserve investigation. Taking advantage of the availability of a detailed map of surface and secreted proteins in Streptococcus pyogenes (group A Streptococcus (GAS)), we used protein array technology to define the "surface interactome" in this important human pathogen. Eighty-three proteins were spotted on glass slides in high density format, and each of the spotted proteins was probed for its capacity to interact with any of the immobilized proteins. A total of 146 interactions were identified, 25 of which classified as "reciprocal," namely, interactions that occur irrespective of which of the two partners was immobilized on the chip or in solution. Several of these interactions were validated by surface plasmon resonance and supported by confocal microscopy analysis of whole bacterial cells. By this approach, a number of interesting interactions have been discovered, including those occurring between OppA, DppA, PrsA, and TlpA, proteins known to be involved in protein folding and transport. These proteins, all localizing at the septum, might be part, together with HtrA, of the recently described ExPortal complex of GAS. Furthermore, SpeI was found to strongly interact with the metal transporters AdcA and Lmb. Because SpeI strictly requires zinc to exert its function, this finding provides evidence on how this superantigen, a major player in GAS pathogenesis, can acquire the metal in the host environment, where it is largely sequestered by carrier proteins. We believe that the approach proposed herein can lead to a deeper knowledge of the mechanisms underlying bacterial invasion, colonization, and pathogenesis.  相似文献   

9.
10.
11.
12.
Starved cells of Streptococcus lactis ML3 grown previously on lactose, galactose, or maltose were devoid of adenosine 5'-triphosphate contained only three glycolytic intermediates: 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate (PEP). The three metabolites (total concentration, ca 40 mM) served as the intracellular PEP potential for sugar transport via PEP-dependent phosphotransferase systems. When accumulation of [14C]lactose by iodoacetate-inhibited starved cells was abolished within 1 s of commencement of transport, a phosphorylated disaccharide was identified by autoradiography. The compound was isolated by ion-exchange (borate) chromatography, and enzymatic analysis showed that the derivative was 6-phosphoryl-O-beta-D-galactopyranosyl (1 leads to 4')-alpha-D-glucopyranose (lactose 6-phosphate). After maximum lactose uptake (ca. 15 mM in 15 s) the cells were collected by membrane filtration and extracted with trichloroacetic acid. Neither free nor phosphorylated lactose was detected in cell extracts, but enzymatic analysis revealed high levels of galactose 6-phosphate and glucose 6-phosphate. The starved organisms rapidly accumulated glucose, 2-deoxy-D-glucose, methyl-beta-D-thiogalactopyranoside, and o-nitrophenyl-beta-D-galactopyranoside in phosphorylated form to intracellular concentrations of 32, 32, 42, and 38.5 mM, respectively. In contrast, maximum accumulation of lactose (ca. 15 mM) was only 40 to 50% that of the monosaccharides. From the stoichiometry of PEP-dependent lactose transport and the results of enzymatic analysis, it was concluded that (i) ca. 60% of the PEP potential was utilized via the lactose phosphotransferase system for phosphorylation of the galactosyl moiety of the disaccharide, and (ii) the residual potential (ca. 40%) was consumed during phosphorylation of the glucose moiety.  相似文献   

13.
14.
15.
Streptococcus lactis strain DR1251 was capable of growth on lactose and galactose with generation times, at 30 degrees C, of 42 and 52 min, respectively. Phosphoenolpyruvate-dependent phosphotransferase activity for lactose and galactose was induced during growth on either substrate. This activity had an apparent K(m) of 5 x 10(-5) M for lactose and 2 x 10(-2) M for galactose. beta-d-Phosphogalactoside galactohydrolase activity was synthesized constitutively by these cells. Strain DR1251 lost the ability to grow on lactose at a high frequency when incubated at 37 degrees C with glucose as the growth substrate. Loss of ability to metabolize lactose was accompanied by the loss of a 32-megadalton plasmid, pDR(1), and Lac(-) isolates did not revert to a Lac(+) phenotype. Lac(-) strains were able to grow on galactose but with a longer generation time. Galactose-grown Lac(-) strains were deficient in beta-d-phosphogalactoside galactohydrolase activity and phosphoenolpyruvate phosphotransferase activity for both lactose and galactose. There was also a shift from a predominantly homolactic to a heterolactic fermentation and a fivefold increase in galactokinase activity, relative to the Lac(+) parent strain grown on galactose. These results suggest that S. lactis strain DR1251 metabolizes galactose primarily via the tagatose-6-phosphate pathway, using a lactose phosphoenolpyruvate phosphotransferase activity to transport this substrate into the cell. Lac(-) derivatives of strain DR1251, deficient in the lactose phosphoenolpyruvate phosphotransferase activity, appeared to utilize galactose via the Leloir pathway.  相似文献   

16.
In addition to causing fulminant disease, Streptococcus pyogenes may be asymptomatically carried between recurrent episodes of pharyngitis. To better understand streptococcal carriage, we characterized in vitro long-term stationary-phase survival (>4 weeks) of S. pyogenes. When grown in sugar-limited Todd-Hewitt broth, S. pyogenes cells remained culturable for more than 1 year. Both Todd-Hewitt supplemented with excess glucose and chemically defined medium allowed survival for less than 1 week. After 4 weeks of survival in sugar-limited Todd-Hewitt broth, at least 10(3) CFU per ml remained. When stained with fluorescent live-dead viability stain, there were a number of cells with intact membranes that were nonculturable. Under conditions that did not support persistence, these cells disappeared 2 weeks after loss of culturability. In persistent cultures, these may be cells that are dying during cell turnover. After more than 4 weeks in stationary phase, the culturable cells formed two alternative colony phenotypes: atypical large colonies and microcolonies. Protein expression in two independently isolated microcolony strains, from 14-week cultures, was examined by use of two-dimensional electrophoresis. The proteomes of these two strains exhibited extensive changes compared to the parental strain. While some of these changes were common to the two strains, many of the changes were unique to a single strain. Some of the common changes were in metabolic pathways, suggesting a possible alternate metabolism for the persisters. Overall, these data suggest that under certain in vitro conditions, S. pyogenes cells can persist for greater than 1 year as a dynamic population.  相似文献   

17.
Streptococcus pyogenes grown in the presence of subinhibitory concentrations of sodium fluoride had a diminished ability, compared to control cells, to adhere to buccal cells, collagen, fibronectin, and laminin. In addition, sodium fluoride was a competitive inhibitor of streptococcal adhesion to collagen and fibronectin, but not laminin. It is suggested that sodium fluoride may be useful in therapy or prophylaxis in infections involving group A streptococci.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号