首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated Factor XIII (FXIIIa) is a transglutaminase that catalyzes the formation of gamma-glutamyl-varepsilon-lysine crosslinks in the fibrin network. To better understand the source of FXIIIa substrate specificity, Q-containing substrates based on beta-casein, K9-peptide, and alpha(2)-antiplasmin were characterized. alpha(2)AP (1-15, Q2, Q4) and alpha(2)AP (1-15, Q2, Q4N, K12R) are highly promising peptide models since they exhibited k(cat)/K(m) values comparable to intact beta-casein. In the absence of a lysine-like donor, FXIIIa could promote deamidation of a reactive Q to an E and solution NMR served as an effective strategy for monitoring this reaction. A tendency toward deamidation allowed greater investigations of the alpha(2)-antiplasmin based peptides. FXIIIa preferentially selects the Q2 residue for carrying out crosslinking processes. The E3 and Q4 provide supporting roles in binding. When a crosslinking reaction occurs at Q2, the Q4 position is sterically blocked from reactivity. By contrast, deamidation of Q2 to E2 allows, for the first time, observation of reactivity at Q4. The K12 position provides an additional favorable site of interaction with the FXIIIa surface. The sensitivity of alpha(2)AP (1-15, Q2, Q4) to amino acid changes at Q2, Q4, and K12 suggests the importance of individual FXIIIa subsites that are controlled by chemical environment and sterics.  相似文献   

2.
Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor   总被引:4,自引:0,他引:4  
A plasma proteinase inhibitor, alpha 2-plasmin inhibitor (alpha 2PI), is cross-linked with alpha chain of fibrin(ogen) by activated coagulation Factor XIII (plasma transglutaminase). alpha 2PI serves only as a glutamine substrate (amine acceptor) for activated Factor XIII in the cross-linking reaction, and the cross-linking occurs between Gln-2 of the alpha 2PI molecule and a lysine residue (amine donor) of fibrin(ogen) alpha chain, whose position was investigated. alpha 2PI and fibrinogen were reacted by activated Factor XIII. The resulting alpha 2PI fibrinogen A alpha chain complex was separated and subjected to two cycles of Edman degradation using phenyl isothiocyanate for the first cycle and dimethylaminoazobenzene-isothiocyanate for the second cycle. The aqueous phase after the cleavage stage of the second cycle, containing dimethylaminoazobenzene-thiohydantoin-Gln cross-linked with A alpha chain, was subjected to CNBr fragmentation and tryptic digestion. Only one of the peptides was found to have the peak of absorbance at 420 nm, indicating the presence of dimethylaminoazobenzene-thiohydantoin-Gln in that peptide. The peptide was identified as corresponding to residues Asn-290-Arg-348 of A alpha chain by analyses of the NH2-terminal amino acid sequence and amino acid composition. The peptide contains a single lysine at position 303, indicating that Lys-303 of fibrinogen A alpha chain is the lysine residue that forms a cross-link with Gln-2 of alpha 2PI.  相似文献   

3.
We investigated the effect of divalent metal ions on the proteolytic cleavage and activation of platelet Factor XIII by thrombin and trypsin. In the absence of metal ions (5 mM EDTA), trypsin and thrombin rapidly degraded platelet Factor XIII (80 kDa) to low-molecular-mass peptides (50-19 kDa) with simultaneous loss of transglutaminase activity. Divalent metal ions protected Factor XIII from proteolytic inactivation with an order of efficacy of Ca2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. Calcium (2 mM) increased by 10- to 1000-fold the trypsin and thrombin concentrations required to degrade Factor XIII to a 19-kDa peptide. Factor XIIIa formed by thrombin in the presence of 5 mM EDTA had one-half the specific activity of Factor XIIIa formed in the presence of calcium. Factor XIII was cleaved by trypsin in the presence of 5 mM Ca2+ to a 51 +/- 3-kDa fragment that had 60% of the original Factor XIIIa activity. A similar tryptic peptide formed in the presence of 5 mM EDTA did not have transglutaminase activity. In the presence of 5 mM Mg2+, thrombin cleaved Factor XIII to a major 51 +/- 3-kDa fragment that had 60% of the Factor XIIIa activity. Mn2+ (0.1-5 mM) limited trypsin and thrombin proteolysis. The resulting digest containing a population of Factor XIII fragments (50-14 kDa) expressed 50-60% transglutaminase activity of Factor XIIIa. Factor XIII was fully activated by both trypsin and thrombin in the presence of 5 mM Zn2+, resulting in two fragments of 76 and 72 kDa. We conclude that the binding of divalent metal ions to platelet Factor XIII induces conformational changes in the protein that alter its susceptibility to proteolysis and influence the expression of transglutaminase activity.  相似文献   

4.
Trumbo TA  Maurer MC 《Biochemistry》2002,41(8):2859-2868
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The more easily activated factor XIII V34L has been correlated with protection from myocardial infarction. V34L and V29F factor XIII mutant peptides were designed to further characterize substrate binding to thrombin. HPLC kinetic studies have been carried out on thrombin hydrolysis of FXIII activation peptide (28-41), FXIII (28-41) V34L, FXIII (28-41) V29F, and FXIII (28-41) V29F V34L. The V34L mutations lead to improvements in both K(m) and k(cat) whereas the V29F mutation primarily affects K(m). Interactions of the peptides with thrombin have been monitored by 1D proton line broadening NMR and 2D transferred NOESY studies. The results were compared with previously published X-ray crystal structures of thrombin-bound fibrinogen Aalpha (7-16), thrombin receptor PAR1 (38-60), and factor XIII (28-37). In solution, the (34)VVPR(37) and (34)LVPR(37) segments of the factor XIII activation peptide serve as the major anchor points onto thrombin. The N-terminal segments are proposed to interact transiently with the enzyme surface. Long-range NOEs from FXIII V29 or F29 toward (34)V/LVPR(37) have not been observed by NMR studies. Overall, the kinetic and NMR results suggest that the factor XIII activation peptide binds to thrombin in a manner more similar to the thrombin receptor PAR1 than to fibrinogen Aalpha. The V29 and V34 positions affect, in different ways, the ability of thrombin to effectively hydrolyze the activation peptide. Mutations at these sites may prove useful in controlling factor XIII activation.  相似文献   

5.
Isetti G  Maurer MC 《Biochemistry》2004,43(14):4150-4159
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The residues N-terminal to the scissile bond are important in determining rates of hydrolysis. Solution studies of wild-type and mutant peptides of factor XIII AP (28-37) suggest residues P(4)-P(1) are most critical in substrate recognition. By contrast, the X-ray crystal structure of FXIII AP (28-37) displays all of the residues, P(10)-P(1), interacting with the thrombin active site in a conformation similar to that of fibrinogen Aalpha (7-16) [Sadasivan, C., and Yee, V. C. (2000) J. Biol. Chem. 275, 36942-36948]. Peptides were therefore synthesized with the N-terminal P(10)-P(6) residues removed to further characterize interactions of thrombin with factor XIII activation peptides. The truncations have no adverse effects on thrombin's ability to bind and to hydrolyze the shortened peptides. The wild-type FXIII AP (33-41) V34 sequence actually exhibits a decrease in K(m) relative to the longer (28-41) sequence whereas the cardioprotective FXIII AP (33-41) V34L exhibits a further increase in k(cat) relative to its longer parent sequence. One-dimensional proton line broadening NMR and 2D transferred-NOESY studies indicate that the shortened peptides maintain similar bound conformations as their FXIII AP (28-37) counterparts. Furthermore, the distinctive NOE between the L34 and P36 side chains is preserved. Kinetic and NMR studies thus reveal that the N-terminal portions of FXIII AP (28-37) (V34 and V34L) are not necessary for effective interaction with the thrombin active site surface. FXIII activation peptides bind to thrombin in a manner more like PAR1 than fibrinogen Aalpha.  相似文献   

6.
The plasma protein alpha 2-antiplasmin is the main physiological inhibitor of the serine protease plasmin, which is responsible for the dissolution of fibrin clots. We have determined the primary structure of mature human alpha 2-antiplasmin by DNA sequencing of overlapping cDNA fragments prepared from human liver mRNA. cDNA clones were identified by hybridization with a 48-base pair deoxyoligonucleotide probe deduced from the sequence of a 16-amino acid peptide of alpha 2-antiplasmin. Mature human alpha 2-antiplasmin contains 452 amino acids. It is homologous (23-28%) with five other proteins belonging to the serine protease inhibitor (serpin) superfamily. Its reactive site, i.e. the peptide bond cleaved by reaction with its primary target enzyme, plasmin, consists of Arg364-Met365. This dipeptide corresponds to the reactive site Met358-Ser359 of the archetypal serpin, alpha 1-antitrypsin.  相似文献   

7.
In the blood coagulation cascade, thrombin cleaves fibrinopeptides A and B from fibrinogen revealing sites for fibrin polymerization that lead to insoluble clot formation. Factor XIII stabilizes this clot by catalyzing the formation of intermolecular cross-links in the fibrin network. Thrombin activates the Factor XIII a(2) dimer by cleaving the Factor XIII activation peptide segment at the Arg(37)-Gly(38) peptide bond. Using a high performance liquid chromatography assay, the kinetic constants K(m), k(cat), and k(cat)/K(m) were determined for thrombin hydrolysis of fibrinogen Aalpha-(7-20), Factor XIII activation peptide-(28-41), and Factor XIII activation peptide-(28-41) with a Val(34) to Leu substitution. This Val to Leu mutation has been correlated with protection from myocardial infarction. In the absence of fibrin, the Factor XIII activation peptide-(28-41) exhibits a 10-fold lower k(cat)/K(m) value than fibrinogen Aalpha-(7-20). With the Factor XIII V34L mutation, decreases in K(m) and increases in k(cat) produce a 6-fold increase in k(cat)/K(m) relative to the wild-type Factor XIII sequence. A review of the x-ray crystal structures of known substrates and inhibitors of thrombin leads to a hypothesis that the new Leu generates a peptide with more extensive interactions with the surface of thrombin. As a result, the Factor XIII V34L is proposed to be susceptible to wasteful conversion of zymogen to activated enzyme. Premature depletion may provide cardioprotective effects.  相似文献   

8.
The reactive site of human alpha 2-antiplasmin   总被引:3,自引:0,他引:3  
Human alpha 2-antiplasmin rapidly forms a stable, equimolar complex with either its target enzyme, plasmin, or with trypsin. Perturbation of the inhibitor-trypsin complex results in peptide bond cleavage at the reactive site of the inhibitor with the concomitant release of a small peptide fragment which apparently represents the carboxyl-terminal segment of the inhibitor. Sequence analysis of this fragment, together with that of an overlapping peptide obtained by treatment of native inhibitor with either Staphylococcus aureus V8 proteinase or human neutrophil elastase, yields data which indicate that the reactive site of alpha 2-antiplasmin encompasses a P1-P'1 Arg-Met sequence. However, unlike alpha 1-1-proteinase inhibitor which has a Met residue in the P1-position, oxidation of alpha 2-antiplasmin has no effect on its inhibitory activity toward either plasmin, trypsin, or chymotrypsin, indicating the lesser mechanistic importance of the P'1-residue during enzyme inactivation by this inhibitor.  相似文献   

9.
Thrombin cleaves fibrinopeptides A and B from fibrinogen leading to the formation of a fibrin network that is later covalently crosslinked by Factor XIII (FXIII). Thrombin helps activate FXIII by catalyzing hydrolysis of the FXIII activation peptides (AP). In the current work, the role of exosites in the ternary thrombin-FXIII-fibrin(ogen) complex was further explored. Hydrolysis studies indicate that thrombin predominantly utilizes its active site region to bind extended Factor XIII AP (FXIII AP 33-64 and 28-56) leaving the anion-binding exosites for fibrin(ogen) binding. The presence of fibrin-I leads to improvements in the K(m) for hydrolysis of FXIII AP (28-41), whereas peptides based on the cardioprotective FXIII V34L sequence exhibit less reliance on this cofactor. Surface plasmon resonance measurements reveal that d-Phe-Pro-Arg-chloromethylketone-thrombin binds to fibrinogen faster than to FXIII a(2) and dissociates from fibrinogen more slowly than from FXIII a(2). This system of thrombin exosite interactions with differing affinities promotes efficient clot formation.  相似文献   

10.
A series of Glu(pNA)-containing peptides was designed to determine the activity of the transglutaminase factor XIIIa at 405 nm due to p-nitroaniline release. The most suitable substrate properties were found for peptides containing the Glu(pNA) residue in the second position from the N terminus. For the best substrate 12 (H-Tyr-Glu(pNA)-Val-Lys-Val-Ile-Gly-NH(2)), a k(cat)/K(m) value of 3531 s(-1)M(-1) was found. Although the k(cat)/K(m) values of the Glu(pNA) peptides are more than 100-fold reduced compared with the previously reported cleavage of natural glutamine-containing substrates such as α(2)-antiplasmin and β-casein, these chromogenic substrates can be useful tools for convenient determination of FXIII-A(2)* activity e.g., for in vitro inhibitor screening. As an example, peptide 12 was used to characterize the inhibition of FXIII-A(2)* by the well-known irreversible inhibitor iodoacetic acid.  相似文献   

11.
The binding sites in fibrinogen for Factor XIII were localized using an immunoblotting technique. Platelet Factor XIII bound to fibrinogen and to plasmin degradation products of fibrin(ogen) including Fragments: X, D1-D3, and D-dimer, but did not bind to Fragment E. Binding of Platelet Factor XIII was independent of calcium ions but could be inhibited by the presence of 0.5 M NaCl. Binding could also be inhibited by preincubating Factor XIII with a 100-fold molar excess of fibrinogen but not by 100-fold molar excess of Fragment E. Binding of Factor XIII to fibrinogen was specific, since several other proteins tested (ovalbumin, bovine serum albumin, alpha 2-macroglobulin, beta-galactosidase, fructose kinase, lactic dehydrogenase, triose phosphate isomerase, fumarase and pyruvate kinase) did not bind Factor XIII. Furthermore, binding was not observed either when Factor XIII was left out or when antiFactor XIII antiserum was substituted with nonimmune serum. When fibrinogen was reduced prior to electrophoresis, Factor XIII bound to the A alpha and B beta chains of fibrinogen and des A,B fibrinogen, the B beta-chain of Fragment X, but not the gamma-chains. Localization of the Factor XIII binding sites to the carboxy terminal segments of the A alpha and B beta chains in the Fragment D-domain of fibrinogen could have important physiological consequences.  相似文献   

12.
In previous work (Sankaran, B., Osterhout, J., Wu, D., and Smrcka, A. V. (1998) J. Biol. Chem. 273, 7148-7154), we showed that overlapping peptides, N20K (Asn(564)-Lys(583)) and E20K (Glu(574)-Lys(593)), from the catalytic domain of phospholipase C (PLC) beta2 block Gbetagamma-dependent activation of PLC beta2. The peptides could also be directly cross-linked to betagamma subunits with a heterobifunctional cross-linker succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate. Cross-linking of peptides to Gbeta(1) was inhibited by PLC beta2 but not by alpha(i1)(GDP), indicating that the peptide-binding site on beta(1) represents a binding site for PLC beta2 that does not overlap with the alpha(i1)-binding site. Here we identify the site of peptide cross-linking and thereby define a site for PLC beta2 interaction with beta subunits. Each of the 14 cysteine residues in beta(1) were altered to alanine. The ability of the PLC beta2-derived peptide to cross-link to each betagamma mutant was then analyzed to identify the reactive sulfhydryl moiety on the beta subunit required for the cross-linking reaction. We find that C25A was the only mutation that significantly affected peptide cross-linking. This indicates that the peptide is specifically binding to a region near cysteine 25 of beta(1) which is located in the amino-terminal coiled-coil region of beta(1) and identifies a PLC-binding site distinct from the alpha subunit interaction site.  相似文献   

13.
The molecular interactions between the plasminogen-staphylokinase complex, alpha 2-antiplasmin and fibrin were studied by measuring the effect of CNBr-digested fibrinogen on the inhibition rate of the plasminogen-staphylokinase complex by alpha 2-antiplasmin. The second-order rate constant for the inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin was 2.7 +/- 0.3.10(6) M-1 s-1 (mean +/- S.D.; n = 7). Addition of CNBr-digested fibrinogen, but not of fibrinogen, resulted in a concentration-dependent reduction of the apparent inhibition rate constant, with a 50 percent reduction at a concentration of 5 nM CNBr-digested fibrinogen. The second-order rate constant for the inhibition of the low-Mr plasminogen-staphylokinase complex (plasminogen lacking the kringle structures comprising the lysine-binding sites) by alpha 2-antiplasmin was about 30-fold lower (9.3 +/- 0.7.10(4) M-1 s-1, mean +/- S.D.; n = 4) than that of plasminogen-staphylokinase and was not affected by addition of CNBr-digested fibrinogen. Inhibition of the plasminogen-staphylokinase complex by the chloromethylketone D-Val-Phe-Lys-Ch2Cl is 9-fold less efficient than that of plasmin (k2/Ki of 700 M-1 s-1 versus 6300 M-1 s-1). Our results confirm and establish that rapid inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin requires the availability of the lysine-binding sites in the plasminogen moiety of the complex. Fibrin, but not fibrinogen, reduces the inhibition rate by alpha 2-antiplasmin by competition for interaction with the lysine-binding site. Protection of the plasminogen-staphylokinase complex bound to fibrin from rapid inhibition by alpha 2-antiplasmin thus appears to contribute to the fibrin-specificity of clot lysis with staphylokinase in a plasma milieu, by allowing preferential plasminogen activation at the fibrin surface, while the free complex is rapidly inhibited in plasma.  相似文献   

14.
Sulfation of human alpha 2-antiplasmin, the major plasma inhibitor of fibrinolysis, was examined using both protein isolated from human plasma and protein synthesized and biosynthetically labeled with [35S]sulfate by a human hepatoma-derived cell line. Linkage of sulfate to tyrosine was demonstrated by recovery of labeled tyrosine sulfate after base hydrolysis of sulfate-labeled alpha 2-antiplasmin. Analysis by reverse-phase high performance liquid chromatography of peptides released from alpha 2-antiplasmin by cleavage with trypsin or cyanogen bromide indicated that sulfate is linked to a single segment of the protein. A cyanogen bromide peptide corresponding to the sulfate-labeled peptide was prepared from alpha 2-antiplasmin isolated from human plasma. Consistent with the presence of tyrosine sulfate in this peptide, its chromatographic elution was altered by treatment with acid under conditions which release sulfate from a tyrosine residue. No peptide in the total digest of alpha 2-antiplasmin by cyanogen bromide eluted at the position of the peptide following desulfation, suggesting that all of the protein is in a sulfated form. The sequence of the sulfate-containing cyanogen bromide peptide as determined by sequential Edman degradation, amino acid composition, and fast atom-bombardment-mass spectrometry was: Glu-Glu-Asp-Tyr(SO4)-Pro-Gln-Phe-Gly-Ser-Pro-Lys-COOH. This peptide is a segment of the previously identified plasmin-binding domain of alpha 2-antiplasmin.  相似文献   

15.
Activated factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS)-based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetic assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting only the final deacylation portion of the transglutaminase reaction. With the MALDI–TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, Staphylococcus aureus fibronectin binding protein A, and thrombin-activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P−1 substrate position is sensitive to charge character, and the P−2 and P−3 substrate positions are sensitive to the broad FXIIIa substrate specificity pockets. The more distant P−8 to P−11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase.  相似文献   

16.
Plasminogen and plasminogen derivatives which contain lysine-binding sites were found to decrease the reaction rate between plasmin and alpha2-antiplasmin by competing with plasmin for the complementary site(s) in alpha2-antiplasmin. The dissocwation constant Kd for the interaction between intact plasminogen (Glu-plasminogen) and alpha2-antiplasmin is 4.0 microM but those for Lys-plasminogen or TLCK-plasmin are about 10-fold lower indicating a stronger interaction. The lysine-binding site(s) which is situated in triple-loops 1--3 in the plasmin A-chain is mainly responsible for the interaction with alpha2-antiplasmin. The interaction between Glu-plasminogen and alpha2-antiplasmin furthermore enhances the activation of Glu-plasminogen by urokinase to a comparable extent as 6-aminohexanoic acid, suggesting that similar conformational changes occur in the proenzyme after complex formation. Fibrinogen, fibrinogen digested with plasmin, purified fragment E and purified fragment D interfere with the reaction between plasmin and alpha2-antiplasmin by competing with alpha2-antiplasmin for the lysine-binding site(s) in the plasmin A-chain. The Kd obtained for these interactions varied between 0.2 microM and 1.4 microM; fragment E being the most effective. Thus the fibrinogen molecule contains several complementary sites to the lysine-binding sites located both in its NH2-terminal and COOH-terminal regions; these sites are to a large extent.  相似文献   

17.
D Lukacova  G R Matsueda  E Haber  G L Reed 《Biochemistry》1991,30(42):10164-10170
As the final enzyme in the coagulation cascade, activated fibrin stabilizing factor or factor XIII catalyzes the intermolecular cross-linking of fibrin chains. To study this enzyme in plasma, we derived a monoclonal antibody (MAb 309) against a peptide sequence (NH2-G-V-N-L-Q-E-F-C-COOH) in the thrombin activation site of factor XIII. Radioimmunoassays indicate that MAb 309 binds specifically to both platelet and plasma factor XIII. Peptide inhibition studies demonstrate that the MAb binds equally well to the factor XIII (FXIII) zymogen and the active form of FXIII (FXIIIa). In immunoblots of whole platelet lysates, MAb 309 binds only to FXIII and does not cross-react with other proteins. In saturation binding studies, the antibody shows a binding avidity of (1.75 +/- 0.35) x 10(9) M-1. MAb 309 also inhibited 99% of apparent FXIIIa activity in a standard transglutaminase assay. SDS-PAGE analysis of fibrin clots showed that MAb 309 inhibited fibrin gamma-gamma cross-linking. Moreover, MAb 309 accelerated the lysis of plasma clots, consistent with inhibition of fibrin-fibrin and fibrin-alpha 2-antiplasmin cross-linking. Immunoblotting experiments revealed that MAb 309 affected apparent FXIIIa activity by inhibiting the thrombin activation of the FXIII zymogen. In addition to its utility as a specific probe for the FXIII a-subunit, the strategy used to obtain MAb 309 may be used to generate MAbs that inhibit the activation of other coagulation factor zymogens.  相似文献   

18.
Possible interaction of alpha-2-antiplasmin with fibrinogen, fibrin and their fragments independent of factor XIII as well as the inhibitor effect on the Glu-plasminogen activation by tissue activator were studied. It was shown that alpha-2-antiplasmin is adsorbed on desAA- and desAABBfibrin films (Kd 69.0 +/- 1.0 nM 68.6 +/- 5.3 nM, respectively). Glu-Plasminogen has no effect on the inhibitor binding with desAABBfibrin. Alpha-2-antiplasmin shows strong affinity for fibrin D-dimer (Kd 65.0 +/- 4.0 nM) and D-fragment of fibrinogen (Kd 119.0 +/- 21.0 nM), but it does not interact with E-fragment. The inhibitor inside the fibrin clot decreases 10 times the activation rate of Glu-plasminogen by the tissue activator both is the presence and without factor XIII at physiological ratio of Glu-plasminogen, tissue activator, fibrin and alpha-2-antiplasmin. Thus we have shown that fibrinogen/fibrin binds alpha-2-antiplasmin independent of the factor XIII. Binding sites of the inhibitor are localized in D-fragment of fibrinogen and/or fibrin D-dimer. Alpha-2-antiplasmin inhibits the Glu-plasminogen activation by tissue activator on fibrin.  相似文献   

19.
The human growth hormone-releasing factor (GRF) peptides [GlyS15]-GRF-(1-15) (IV), trifluoroacetyl-GRF-(20-44) (VI), trifluoroacetyl-GRF-(18-44) (VIII), and trifluoroacetyl-GRF-(16-44) (X) were synthesized by the solid-phase method. Each of the peptides was reacted with citraconic anhydride and the trifluoroacetyl group was removed by reaction with 10% hydrazine in water. The citraconylated GRF-(1-15) peptide was coupled to the (20-44), (18-44) or (16-44) peptides by reaction with silver nitrate/N-hydroxysuccinimide to give GRF-(1-15)-(20-44) (XII), GRF-(1-15)-(18-44) (XIII), or GRF-(1-44), respectively. GRF-(1-44) was shown to stimulate the release of rat growth hormone from rat pituitary cells with an ED50 = 8.8 X 10(-11)M. Peptides XII and XIII were inactive, either as agonists or as antagonists of the action of GRF-(1-44).  相似文献   

20.
The mRNA precursor encoded by the R15 gene is alternatively spliced in different neurons to form two related variants, R15-1 and R15-2 mRNA. One of the peptides encoded by the R15-2 mRNA, the R15 alpha 1 peptide, is expressed in the endogenously bursting neuron R15 and mediates some of its central and peripheral synaptic actions. In this study we found that the R15 alpha 2 peptide, which is encoded by the R15-1 mRNA, is synthesized in other neurons in the abdominal ganglion and is also bioactive. The R15 alpha 1 and R15 alpha 2 peptides were found to exert many similar actions on the cardiovascular, digestive, respiratory, and reproductive systems. However, the differences between many of the pharmacological effects of the R15 alpha 1 and R15 alpha 2 peptides indicate that alternative splicing in this system results in two functionally different peptides. Widespread immunoreactivity was found for an antibody directed against the R15 alpha 2 peptide, both in the central nervous system and the periphery. But because of the shared sequence with the R15 alpha 1 peptide, the antibody cross-reacts with the R15 alpha 1 peptide. To distinguish immunocytochemically between the two peptides, we also raised a second antibody that recognizes only the R15 alpha 1 peptide. This antibody labeled the cell body of only one neuron in the central nervous system, R15, although widespread immunoreactivity was found in axons and varicosities in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号