首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage phi6 has a genome of three segments of double-stranded RNA. Each virus particle contains one each of the three segments. Packaging is effected by the acquisition, in a serially dependent manner, of the plus strands of the genomic segments into empty procapsids. The empty procapsids are compressed in shape and expand during packaging. The packaging program involves discrete steps that are determined by the amount of RNA inside the procapsid. The steps involve the exposure and concealment of binding sites on the outer surface of the procapsid for the plus strands of the three genomic segments. The plus strand of segment S can be packaged alone, while packaging of the plus strand of segment M depends upon prior packaging of S. Packaging of the plus strand of L depends upon the prior packaging of M. Minus-strand synthesis begins when the particle has a full complement of plus strands. Plus-strand synthesis commences upon the completion of minus-strand synthesis. All of the reactions of packaging, minus-strand synthesis, and plus-strand synthesis can be accomplished in vitro with isolated procapsids. Live-virus constructions that are in accord with the model have been prepared. Mutant virus with changes in the packaging program have been isolated and analyzed.  相似文献   

2.
Bacteriophage phi 6 has a segmented genome consisting of three pieces of double-stranded RNA (dsRNA). The viral procapsid is the structure that packages plus strands, synthesizes the complementary negative strands to form dsRNA, and then transcribes dsRNA to form plus-strand message. The minus-strand synthesis of a particular genomic segment is dependent on prior packaging of the other segments. The 5' end of the plus strand is necessary and sufficient for packaging, while the normal 3' end is necessary for synthesis of the negative strand. We have now investigated the ability of truncated RNA segments which lack the normal 3' end of the molecules to stimulate the synthesis of minus strands of the other segments. Fragments missing the normal 3' ends were able to stimulate the minus-strand synthesis of intact heterologous segments. Minus-strand synthesis of one intact segment could be stimulated by the presence of two truncated nonreplicating segments. The 5' fragments of each single-stranded genomic segment can compete with homologous full-length single-stranded genomic segments in minus-strand synthesis reactions, suggesting that there is a specific binding site in the procapsid for each segment.  相似文献   

3.
4.
The genome of bacteriophage phi 6 contains three segments of double-stranded RNA. Procapsid structures whose formation was directed by cDNA copies of the large genomic segment are capable of packaging the three viral message sense RNAs in the presence of ATP. Addition of UTP, CTP, and GTP results in the synthesis of minus strands to form double-stranded RNA. In this report, we show that procapsids are capable of taking up any of the three plus-strand single-stranded RNA segments independently of the others. In manganese-containing buffers, synthesis of the corresponding minus strand takes place. In magnesium-containing buffers, individual message sense viral RNA segments were packaged, but minus-strand replication did not take place unless all three viral single-stranded RNA segments were packaged. Since the conditions of packaging in magnesium buffer more closely resemble those in vivo, these results indicated that there is no specific order or dependence in packaging and that replication is regulated so that it does not begin until all segments are in place.  相似文献   

5.
6.
7.

Background  

Φ8 is a bacteriophage containing a genome of three segments of double-stranded RNA inside a polyhedral capsid enveloped in a lipid-containing membrane. Plus strand RNA binds and is packaged by empty procapsids. Whereas Φ6, another member of the Cystoviridae, shows high stringency, serial dependence and precision in its genomic packaging in vitro and in vivo, Φ8 packaging is more flexible. Unique sequences (pac) near the 5' ends of plus strands are necessary and sufficient for Φ6 genomic packaging and the RNA binding sites are located on P1, the major structural protein of the procapsid.  相似文献   

8.
9.
Bacteriophage phi 6 contains three segments of double-stranded RNA. The procapsid consists of proteins P1, P2, P4, and P7, which are encoded by the viral L segment. cDNA copies of this segment have been cloned into plasmids that direct the production of these proteins, which assemble into polyhedral procapsids. These procapsids are capable of packaging plus-sense phi 6 RNA in the presence of nucleoside triphosphate and synthesizing the complementary minus strand to form double-stranded RNA. In this article, we report the presence of a nucleotide-binding site in protein P4. The viral procapsid and nucleocapsid exhibit a nucleoside triphosphate phosphohydrolase activity that converts nucleoside triphosphates into nucleoside diphosphates.  相似文献   

10.
Double-stranded RNA viruses have a virion-associated RNA-dependent RNA polymerase activity which is involved in such critical steps of viral assembly as genome packaging and minus strand synthesis. In vitro studies of a bacterial dsRNA virus, ø6, and a yeast virus, L-A, have shed light on capsid formation as well as on the protein/RNA interactions and packaging of the viral genomes. In the ø6 system, an empty dodecahedral polymerase complex (procapsid) composed of four protein species is formed without the help of other viral proteins or RNA. This particle packages positive sense viral RNA genome segments in an ATP dependent reaction. The presence of all rNTPs allows the synthesis of complementary (-) strands within the particle. Self-assembly of an additional protein shell (composed of protein P8) around this particle takes place in the presence of Ca2+ ions. In vivo, these nucleocapsids obtain an envelope while still residing in the cell cytoplasm. L-A, in contrast, is not known to make a prohead structure. The Pol domain of L-A's Gag-Pol fusion protein is necessary for packaging of the (+) strand RNA and probably actually binds to the (+) strand packaging site (a stem-loop with a protruding A) insuring its packaging while the Gag domain primes polymerization of the coat protein. N-Acetylation of Gag by the host MAK3 N-acetyltransferase is necessary for proper assembly, and the ratio of Gag-Pol/Gag, determined by the efficiency of - 1 ribosomal frameshifting, is critical for propagation of the M1 satellite dsRNA.  相似文献   

11.
12.
The initial assembly product of bacteriophage ?6, the procapsid, undergoes major structural transformation during the sequential packaging of its three segments of single-stranded RNA. The procapsid, a compact icosahedrally symmetric particle with deeply recessed vertices, expands to the spherical mature capsid, increasing the volume available to accommodate the genome by 2.5-fold. It has been proposed that expansion and packaging are linked, with each stage in expansion presenting a binding site for a particular RNA segment. To investigate procapsid transformability, we induced expansion by acidification, heating, and elevated salt concentration. Cryo-electron microscopy reconstructions after all three treatments yielded the same partially expanded particle. Analysis by cryo-electron tomography showed that all vertices of a given capsid were either in a compact or an expanded state, indicating a highly cooperative transition. To benchmark the mature capsid, we analyzed filled (in vivo packaged) capsids. When these particles were induced to release their RNA, they reverted to the same intermediate state as expanded procapsids (intermediate 1) or to a second, further expanded state (intermediate 2). This partial reversibility of expansion suggests that the mature spherical capsid conformation is obtained only when sufficient outward pressure is exerted by packaged RNA. The observation of two intermediates is consistent with the proposed three-step packaging process. The model is further supported by the observation that a mutant capable of packaging the second RNA segment without previously packaging the first segment has enhanced susceptibility for switching spontaneously from the procapsid to the first intermediate state.  相似文献   

13.
14.
15.
The NS5B protein, or RNA-dependent RNA polymerase of the hepatitis virus type C, catalyzes the replication of the viral genomic RNA. Little is known about the recognition domains of the viral genome by the NS5B. To better understand the initiation of RNA synthesis on HCV genomic RNA, we used in vitro transcribed RNAs as templates for in vitro RNA synthesis catalyzed by the HCV NS5B. These RNA templates contained different regions of the 3' end of either the plus or the minus RNA strands. Large differences were obtained depending on the template. A few products shorter than the template were synthesized by using the 3' UTR of the (+) strand RNA. In contrast the 341 nucleotides at the 3' end of the HCV minus-strand RNA were efficiently copied by the purified HCV NS5B in vitro. At least three elements were found to be involved in the high efficiency of the RNA synthesis directed by the HCV NS5B with templates derived from the 3' end of the minus-strand RNA: (a) the presence of a C residue as the 3' terminal nucleotide; (b) one or two G residues at positions +2 and +3; (c) other sequences and/or structures inside the following 42-nucleotide stretch. These results indicate that the 3' end of the minus-strand RNA of HCV possesses some sequences and structure elements well recognized by the purified NS5B.  相似文献   

16.
Bacteriophage phi6 has a segmented double-stranded RNA genome. The genomic single-stranded RNA (ssRNA) precursors are packaged into a preformed protein capsid, the polymerase complex, composed of viral proteins P1, P2, P4, and P7. Packaging of the genomic precursors is an energy-dependent process requiring nucleoside triphosphates. Protein P4, a nonspecific nucleoside triphosphatase, has previously been suggested to be the prime candidate for the viral packaging engine, based on its location at the vertices of the viral capsid and its biochemical characteristics. In this study we were able to obtain stable polymerase complex particles that are completely devoid of P4. Such particles were not able to package ssRNA segments and did not display RNA polymerase (either minus- or plus-strand synthesis) activity. Surprisingly, a mutation in P4, S250Q, which reduced the level of P4 in the particles to about 10% of the wild-type level, did not affect RNA packaging activity or change the kinetics of packaging. Moreover, such particles displayed minus-strand synthesis activity. However, no plus-strand synthesis was observed, suggesting that P4 has a role in the plus-strand synthesis reaction also.  相似文献   

17.
C Chen  P Guo 《Journal of virology》1997,71(1):495-500
Bacteriophage phi29 is typical of double-stranded DNA viruses in that its genome is packaged into a preformed procapsid during maturation. An intriguing feature of phi29 assembly is that a virus-encoded RNA (pRNA) is required for the packaging of its genomic DNA. Psoralen cross-linking, primer extension, and T1 RNase partial digestion revealed that pRNA had at least two conformations; one was able to bind procapsids, and the other was not. In the presence of Mg2+, one stretch of pRNA, consisting of bases 31 to 35, was confirmed to be proximal to base 69, as revealed by its efficient cross-linking by psoralen. Two cross-linking sites in the helical region were identified. Mg2+ induced a conformational change of pRNA that exposes the portal protein binding site by promoting the refolding of two strands of the procapsid binding region, resulting in the formation of pRNA-procapsid complexes. The procapsid binding region in this binding-competent conformation could not be cross-linked with psoralen. When the two strands of the procapsid binding region were fastened by cross-linking, pRNA could neither bind procapsids nor package phi29 DNA. A pRNA conformational change was also discernible by comparison of migration rates in native EDTA and Mg2+ polyacrylamide gel electrophoresis and was revealed by T1 RNase probing. The Mg2+ concentration required for the detection of a change in pRNA cross-linking patterns was 1 mM, which was the same as that required for pRNA-procapsid complex formation and DNA packaging and was also close to that in normal host cells.  相似文献   

18.
19.
20.
Linear DNAs of any sequence can be packaged into empty viral procapsids by the phage T4 terminase with high efficiency in vitro. Packaging substrates of 5 kbp and 50 kbp, terminated by energy transfer dye pairs, were constructed from plasmid and λ phage DNAs. Nuclease and fluorescence correlation spectroscopy (FCS) assays showed that ∼ 20% of the substrate DNA was packaged and that the DNA dye ends of the packaged DNA were protected from nuclease digestion. Upon packaging, both 5-kbp and  50-kbp DNAs produced comparable fluorescence resonance energy transfer (FRET) between Cy5 and Cy5.5 double-dye terminated DNAs. Single-molecule FRET (sm-FRET) and photobleaching analysis shows that FRET is intramolecular rather than intermolecular upon packaging of most procapsids and demonstrates that single-molecule detection allows mechanistic analysis of packaging in vitro. FRET-FCS and sm-FRET measurements are comparable and show that both the 5-kbp and the  50-kbp packaged DNA ends are held within 8-9 nm of each other, within the dimensions of the long axis of the procapsid portal. The calculated distribution of FRET distances is relatively narrow for both FRET-FCS and sm-FRET, suggesting that the two packaged DNA ends are held at the same fixed distance relative to each other in most capsids. Because one DNA end is known to be positioned for ejection through the portal, it can be inferred that both DNAs ends are held in proximity to the portal entrance and ejection channel. The analysis suggests that a DNA loop, rather than a DNA end, is translocated by the packaging motor to fill the procapsid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号