首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubation of (R)-tazofelone and (S)-tazofelone in rat, dog, and human liver microsomes demonstrated that the (R)-tazofelone enantiomer was more rapidly metabolized, with two diastereomeric sulfoxides as the major metabolites formed in all three species. The two diasteresomers epimerized at physiological pH, therefore total sulfoxide formation rates were measured. The formation of the total sulfoxide metabolites followed Michaelis-Menten kinetics. The K(m), Vmax, and intrinsic formation clearance (Vmax/K(m)) values were determined in rat, dog, and human liver microsomes. The intrinsic formation clearance of sulfoxide from (R)-tazofelone exceeded that of (S)-tazofelone in all three species. In vivo studies in rats and dogs dosed orally and intravenously confirmed the stereoselective metabolism of tazofelone observed in vitro. Plasma concentrations of (S)-tazofelone exceeded (R)-tazofelone in rats and dogs by a factor of 3 to 4. In rat portal plasma, both enantiomers were of approximately equal concentration after oral dosing, indicating similar absorption. The half-lives of tazofelone and total sulfoxides in rats were 3.5 and 2.8 h, respectively. In dogs, the half-lives of tazofelone and total sulfoxides were 2.2 and 5.5 h, respectively. Plasma clearance was 2.3 l/h in rats and 1.4 l/h in dogs, and the volumes of distribution were 12 and 4.5 l, respectively, in rats and dogs. Both enantiomers were highly bound to plasma proteins to a similar extent in both species.  相似文献   

2.
The enantiomers of a trans-5,6-dihydrodiol formed in the metabolism of 7,12-dimethylbenz[a]anthracene by rat liver microsomes (microsomal fractions) were resolved by chiral stationary-phase high-performance liquid chromatography. The major 7,12-dimethylbenz[a]anthracene trans-5,6-dihydrodiol enantiomer and its hydrogenation product 5,6,8,9,10,11-hexahydro-trans-5,6-diol were found to have 5S,6S absolute configurations by the exciton chirality c.d. method. The R,R/S,S enantiomer ratios of 7,12-dimethylbenz[a]anthracene trans-5,6-dihydrodiol formed in the metabolism of 7,12-dimethylbenz[a]anthracene by liver microsomes from untreated, 3-methylcholanthrene-treated and phenobarbital-treated male Sprague-Dawley rats were found to be 11:89, 6:94, and 5:95 respectively. These findings and those reported previously on the metabolic formations of trans-5,6-dihydrodiols from 7-methylbenz[a]anthracene and 12-methylbenz[a]anthracene suggest that the 12-methyl group in 7,12-dimethylbenz[a]anthracene plays an important role in determining the stereoselective metabolism at the K-region 5,6-double bond. Furthermore, the finding that formation of 5S,6S-dihydrodiol as the predominant enantiomer was not significantly affected by the isoenzymic composition of cytochrome P-450 present in microsomes prepared from the livers of the rats pretreated with the different inducing agents indicates that the stereoselectivity depends on the substrate metabolized rather than on the precise nature of the metabolizing-enzyme system.  相似文献   

3.
The protein binding of the enantiomers of gallopamil has been investigated in solutions of human serum albumin, α1-acid glycoprotein and serum. Over the range of concentrations attained after oral gallopamil administration, the binding of both enantiomers to albumin, α1-acid glycoprotein, and serum proteins was independent of gallopamil concentration. The binding to both human serum albumin (40 g/liter) [range of fraction bound (fb) R: 0.624 to 0.699; S: 0.502 to 0.605] and α1-acid glycoprotein (0.5 g/liter) (range of fb R: 0.530 to 0.718; S: 0.502 to 0.620) was stereoselective, favoring the (R)-enantiomer (predialysis gallopamil concentrations 2.5 to 10,000 ng/ml). When the enantiomers (predialysis gallopamil concentration 10 ng/ml) were studied separately in drug-free serum samples from six healthy volunteers the fraction of (S)-gallopamil bound (fb: 0.943 ± 0.016) was lower (P < 0.05) than that of (R)-gallopamil (fb: 0.960 ± 0.010). The serum protein binding of both (R)- and (S)-gallopamil was unaffected by their optical antipodes (fb R: 0.963 ± 0.011; S: 0.948 ± 0.015) indicating that at therapeutic concentrations a protein binding enantiomer–enantiomer interaction does not occur. The protein binding of (R)- and (S)-gallopamil ex vivo 2 h after single dose oral administration of 50 mg pseudoracemic gallopamil (fb R: 0.960 ± 0.010: predialysis [R] 6.9 to 35.3 ng/ml; S: 0.943 ± 0.016: predialysis [S] 9.5 to 30.7 ng/ml) was comparable to that observed in vitro in drug-free serum. Gallopamil metabolites formed during first-pass following oral administration, therefore, do not influence the protein binding of (R)- or (S)-gallopamil. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The effects of the enantiomers of ibuprofen (0.25 and 0.50 mmol/kg b.w.) and flurbiprofen (0.01, 0.03, and 0.06 mmol/kg b.w.) on the beta-oxidation of palmitate were investigated in the rat. The mean cumulative exhalation of 14CO2 after ip administration of [U-14C]palmitic acid was significantly reduced over 6 h by ibuprofen at the higher dose but not at the lower dose for either enantiomer. There was no difference between the enantiomers, the reduction over 6 h being 31.3 and 33.0% for (R)- and (S)-ibuprofen, respectively. There was also a significant inhibition of beta-oxidation by flurbiprofen at all 3 doses. Again, there was no stereoselectivity evident in this inhibition. Flurbiprofen was much more potent than ibuprofen in eliciting this effect, the 0.01mmol/kg dose giving a similar reduction in beta-oxidation as observed for the 0.50 mmol/kg dose of ibuprofen. The data support the hypothesis that inhibition of the in vivo beta-oxidation of palmitate by ibuprofen and flurbiprofen is primarily via a nonstereoselective noncoenzyme A-dependent mechanism.  相似文献   

5.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. In this study, brain and plasma levels of both enantiomers were determined in mice and rats after oral administration of reboxetine at doses (1.1 mg/kg, mouse; 20 mg/kg, rat) twice the respective ED50 values in the antireserpine test. Plasma and brain concentrations of each enantiomer were measured up to 6 h postdosing using an HPLC method with fluorimetric detection after derivatization with a chiral agent (FLEC). In mice and rats, brain and plasma levels of the (R,R)-enantiomer were always higher than those of the (S,S)-enantiomer. After normalization for dose, the mean AUC0-tz values of both the (R,R)- and (S,S)-enantiomers in mouse brain were about 23 and 32 times higher than in rat brain, respectively. In plasma, the corrected mean AUC0-tz values were about 5 (R,R) and 10 (S,S) times higher in mice than in rats. These results provide evidence for the higher bioavailability and/or lower clearance of both enantiomers in mice than in rats, and for a higher penetration of both enantiomers into mouse brain compared to rat brain. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. The pharmacokinetics of reboxetine enantiomers were determined in a crossover study in three male beagle dogs. Each animal received the following oral treatments, separated by 1-week washout period: 10 mg/kg reboxetine, 5 mg/kg (R,R)- and 5 mg/kg (S,S)-. Plasma and urinary levels of the reboxetine enantiomers were monitored up to 48 h post-dosing using an enantiospecific HPLC method with fluorimetric detection (LOQ: 1.1 ng/ml in plasma and 5 ng/ml in urine for each enantiomer). After reboxetine administration mean tmax was about 1 h for both enantiomers. Cmax and AUC were about 1.5 times higher for the (R,R)- than for the (S,S)-enantiomer, mean values ± SD being 704 ± 330 and 427 ± 175 ng/ml for Cmax and 2,876 ± 1,354 and 1,998 ± 848 ng.h/ml for AUC, respectively. No differences between the (R,R)- and (S,S)-enantiomers were observed in t½ (3.9 h). Total recovery of the two enantiomers in urine was similar, the Ae (0–48 h) being 1.3 ± 0.7 and 1.1 ± 0.7% of the enantiomer dose for the (R,R)- and the (S,S)-enantiomers, respectively. No marked differences in the main plasma pharmacokinetic parameters were found for either enantiomer on administration of the single enantiomers or reboxetine. No chiral inversion was observed after administration of the separate enantiomers, as already observed in humans. Chirality 9:303–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
To investigate the influence of rheumatoid arthritis on the stereoselective disposition of fenoprofen administered as a racemic mixture, eight patients with rheumatoid arthritis receiving calcium rac-fenoprofen (200 mg/8 h) and 7 healthy volunteers given single oral dose (600 mg) were investigated. Serial blood samples and urine were collected from zero to 24 h after fenoprofen (FEN) administration. The following differences were observed between the (+)-(S) and (-)-(R)-FEN in the patients with rheumatoid arthritis (means 95% CI, Wilcoxon test, P < 0.05): C(max) 14.1 (12.5-15.8) versus 3.6 (2.5-4.7) microg/ml; AUC(ss) (0-8) 80.5 (67.3-93.7) versus 12.1 (8.8-15.4) microg.h/ml; Cl(T)/f 1.3 (1.0-1.5) versus 9.1 (6.5-11.8) l/h; and t(1/2) 3.1 (2.3-3.9) versus 1.2 (0.8-1.6) h. The Cl(T)/f of (-)-(R)-FEN was reduced in patients with rheumatoid arthritis when compared to healthy volunteers: 9.1 (6.5-11.8) versus 17.4 (13.9-20.9) l/h; P < 0.05 Mann-Whitney test. The administration of rac-FEN as a single dose to healthy volunteers or multiple doses to patients with rheumatoid arthritis resulted in lower Cl(T)/f for the (+)-(S)-FEN. The lower Cl(T)/f of (-)-(R)-FEN observed for patients with rheumatoid arthritis is consistent with lower clearance by inversion, although other metabolic pathways, drug interactions, and bioavailability of the individual enantiomers may also contribute to the difference.  相似文献   

8.
Citalopram (CITA) is available as a racemic mixture and as a pure enantiomer. Its antidepressive action is related to the (+)-(S)-CITA and to the metabolite (+)-(S)-demethylcitalopram (DCITA). In the present investigation, a method for the analysis of CITA and DCITA enantiomers in human and rat plasma was developed and applied to the study of pharmacokinetics. Plasma samples (1 ml) were extracted at pH 9.0 with toluene:isoamyl alcohol (9:1, v/v). The CITA and DCITA enantiomers were analyzed by LC-MS/MS on a Chiralcel OD-R column. Recovery was higher than 70% for both enantiomers. The quantification limit was 0.1 ng/ml, and linearity was observed up to 500 ng/ml plasma for each CITA and DCITA enantiomer. The method was applied to the study of the kinetic disposition of CITA administered in a single oral dose of 20 mg to a healthy volunteer and in a single dose of 20 mg/kg (by gavage) to Wistar rats (n = 6 for each time). The results showed a higher proportion of the (-)-(R)-CITA in human and rat plasma, with S/R AUC ratios for CITA of 0.28 and 0.44, respectively. S/R AUC ratios of DCITA were 0.48 for rats and 1.04 for the healthy volunteer.  相似文献   

9.
A Avgerinos  A J Hutt 《Chirality》1990,2(4):249-256
The plasma disposition of the enantiomers of ibuprofen has been investigated following the oral administration of the racemic drug (400 mg) to 24 healthy male volunteers. The plasma elimination of (R)-ibuprofen was found to be more rapid than that of the S-enantiomer [plasma half-life: (R) 2.03 h; (S) 3.05 h; 2P less than 0.001], resulting in a progressive enrichment in the plasma content of this isomer, some 64% of the total area under the plasma concentration time curves (AUC) being due to the pharmacologically active enantiomer. The influence of dose on the pharmacokinetic characteristics of the enantiomers of ibuprofen, over the range 200-800 mg, was investigated in three subjects. Examination of dose-normalized AUC values and oral clearance indicate the dose dependence of (R)-ibuprofen disposition.  相似文献   

10.
The lymphatic absorption of cholesterol and plasma clearance of chylomicrons were investigated in Cu-deficient rats (CuD) fed 0.5 mg Cu/kg diet, as compared with Cu-adequate control rats (CuA) fed 7.5 mg/kg diet. Cholesterol absorption was measured by the 14C-radioactivity appearing in the mesenteric lymph at hourly intervals for 8 hr after an intraduodenal dose of [14C]cholesterol. The plasma clearance of chylomicrons was measured at 3, 6, and 10 min after an intravenous dose of chylomicrons labeled in vivo with [3H]retinyl ester. Cumulative [14C]cholesterol absorption and total lymphatic output of cholesterol were significantly decreased in CuD at 4 hr and thereafter, with no change in percentage distribution of free and esterified cholesterol. Over an 8-hr period, 7.3% of the dose was absorbed by CuD and 9.2% by CuA. When [3H]chylomicrons, obtained from a CuD or CuA donor rat, were injected into CuD and CuA recipient rats, the label was cleared faster in CuD during the first 3 min. At 6 and 10 min, however, no significant difference in percentage clearance of the dose was observed between the groups. The half-life (t1/2) of [3H]chylomicrons and the total 3H-radioactivity taken up by the liver during the entire 10-min period did not differ between the groups, regardless of the source of chylomicrons. The activities of both endothelial lipoprotein lipase (LPL) and hepatic lipase (HL) in postheparin plasma were markedly lower in CuD. As expressed in micromoles fatty acid released/hr/ml plasma, the activities of LPL in CuD and CuA were 32.6 +/- 1.9 and 45.6 +/- 1.3, respectively. A similar magnitude of difference was also observed in HL activity. The data provide evidence that copper deficiency impairs the intestinal transport of cholesterol and the peripheral lipolysis of chylomicrons. The data, however, strongly suggest that the hepatic uptake of chylomicron remnants via the apo-E-dependent mechanism may not be impaired in Cu deficiency.  相似文献   

11.
ML-1035, 4-amino-5-chloro-2-[2-(methylsulfinyl)ethoxy]-N-[2-(diethylamino)ethyl]benzamide, is a sulfoxide compound and a racemic gastroprokinetic agent with a chiral center at the sulfur atom. We have investigated the disposition kinetics of (R)-ML-1035 sulfoxide (R) and (S)-ML-1035 sulfoxide (S) after the single enantiomers and the racemic mixture were administered to rats in separate experiments. There was no noticeable chiral inversion after either enantiomer dose. Both enantiomers were rapidly absorbed. After dosing with enantiomers or with the racemate, the resulting plasma concentration-time curve of R was closely parallel to that of S in both intravenous and oral experiments, suggesting that the two enantiomers have approximately the same disposition kinetics. After intravenous enantiomer doses, only S underwent conversion to sulfide, suggesting that sulfidation in the liver is enantioselective. However, the enantioselective sulfidation after intravenous dosing did not introduce a difference in the global plasma disposition profiles between R and S, since the reduction reaction is a minor metabolic process. Other metabolic reactions such as sulfonation and mono-N-desethylations were not enantioselective. After oral administration, conversion to sulfide was observed for both enantioners, implicating the existence of a nonhepatic pathway in sulfidation. Administration of a prochiral sulfide dose was associated with an enantioselective sulfoxidation, in which the R/S concentration ratios increased as a function of time. In addition, enantiomeric interaction causing changes in pharmacokinetic parameters was observed after the oral racemate dose, while the interaction is negligible after an intravenous racemate dose, indicating a route dependency in enantiomeric interaction. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Pharmacokinetics of 3H-cicaprost in healthy volunteers   总被引:1,自引:0,他引:1  
Cicaprost (5-[(E)-(1S,5S,6S,7R)-7-hydroxy-6-[(3S,4S)-3-hydroxy-4-methylnona- 1,6- diinyl]-bicyclo[3.3.0]octan-3-yliden]-3-oxapentanoic acid, ZK 96 480) is a novel PGI2-derivative, which is chemically stable and not subject to metabolic degradation in rats and cynomolgus monkeys. The pharmacokinetics of Cicaprost were studied in six healthy volunteers (age: 54-74 y) after i.v. infusion (2.1 micrograms over 60 min) and p.o. dosage (7.6 micrograms) of the tritiated compound. All treatments were well-tolerated by the test subjects. At the end of the infusion plasma levels of approximately 100 pg/ml were reached, declining biphasically with half-lives of 3-4 min and 64 +/- 21 min. Total clearance was 3.8 +/- 0.5 ml/min/kg. The oral dosage resulted in peak plasma levels of 251 +/- 90 pg/ml occurring at 23 +/- 5 min post dose. The terminal half-life in the plasma was 115 +/- 30 min. Gastro-intestinal absorption and absolute bioavailability of Cicaprost was complete. After both routes of administration approx. 60% of dose was excreted with the urine within 24 h, whereas fecal 3H-excretion lasted for several days and accounted for approx. 35%. Radiochromatography revealed that Cicaprost was metabolically stable in plasma and urine. In the feces several degradation products were observed apart from approx. 30% of the dose fraction being excreted unchanged by that route. The present results demonstrate that Cicaprost is an orally completely bioavailable, metabolically stable PGI2-mimetic which may be an ideal candidate for oral therapy because of its pharmacokinetic characteristics.  相似文献   

13.
Nascent high density lipoprotein (HDL) and nascent very low density lipoprotein (VLDL) were isolated from rat livers that had been perfused with [3H]glycerol to label the triglyceride. When injected into intact rats, the labeled HDL-triglyceride disappeared as rapidly as the VLDL-triglyceride, with only 10% of the injected label remaining in the plasma after 30 min. The protein moiety of nascent HDL was labeled with [35S]methionine in a similar fashion and the labeled nascent HDL was separated into nonretained (NR) and retained (R) fractions by heparin-Sepharose affinity chromatography. When injected into rats, 55% of the injected label in nascent fraction NR and 72% of that in nascent fraction R was recovered from plasma at 30 min, compared to only 10% of the triglyceride label from unfractionated nascent HDL, indicating dissociation of triglyceride and apolipoprotein clearance. The plasma decay curves for both triglyceride and protein were biexponential. By 5 min, 15% of the 35S label remaining in plasma represented apoE and apoC that had been transferred from nascent HDL fractions NR and R to the d less than 1.063 g/ml fraction of plasma. Plasma HDL was labeled in vivo with [35S]methionine, separated into fractions NR and R, and the clearance of the two plasma HDL fractions was compared with that of the corresponding nascent HDL fractions. Except for a faster rate of removal of the nascent HDL fractions during the first 5 min, the serum decay curves were very similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Biointeraction studies based on high performance affinity chromatography were used to investigate the binding of human serum albumin (HSA) to two major phenytoin metabolites: 5-(3-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH). This was initially examined by conducting self-competition zonal elution experiments in which m-HPPH or p-HPPH were placed in both the mobile phase and injected sample. It was found that each metabolite had a single major binding site on HSA. Competitive zonal elution experiments using l-tryptophan, warfarin, digitoxin, and cis-clomiphene as site-selective probes indicated that m-HPPH and p-HPPH were interacting with the indole-benzodiazepine site of HSA. The estimated association equilibrium constants for m-HPPH and p-HPPH at this site were 3.2 (+/-1.2)x10(3) and 5.7 (+/-0.7)x10(3)M(-1), respectively, at pH 7.4 and 37 degrees C. Use of these metabolites as competing agents for injections of phenytoin demonstrated that m-HPPH and p-HPPH had direct competition with this drug at the indole-benzodiazepine site. However, the use of phenytoin as a competing agent indicated that this drug had additional negative allosteric interactions on the binding of these metabolites to HSA. These results agreed with previous studies on the binding of phenytoin to HSA and its effects on the interactions of HSA with site-selective probes for the indole-benzodiazepine site.  相似文献   

15.
Pharmacokinetics of ibuprofen enantiomers in dogs   总被引:1,自引:0,他引:1  
Inversion of inactive (R)-ibuprofen to active (S)-ibuprofen has been suggested to occur presystemically only. In order to investigate the site of inversion in dogs we administered both enantiomers either intravenously or intraduodenally (10 mg/kg) to adult, male beagle dogs (n = 3) in a crossover design. Plasma, urine, and bile were collected for up to 6 h and analyzed stereospecifically by HPLC, according to a previously published method. Pharmacokinetic parameters were calculated using a linear computer program. Absorption after intraduodenal administration occurred rapidly, resulting in maximum plasma concentrations 0.2 h after giving the enantiomer. Approximately 70% of the (R)-enantiomer (according to AUC) was inverted to the S-enantiomer independent of route of administration. No R-ibuprofen could be detected in plasma after (S)-ibuprofen administration. Mean residence time was found to be 2 to 3 times longer for (S)- than for (R)-ibuprofen. Total systemic clearance from plasma was twice as high for (R)- than for (S)-ibuprofen. There were no differences between plasma clearances after intravenous and intraduodenal administration. Between 8 and 17% of dose was recovered in bile [especially as free and conjugated (S)-ibuprofen] and 3-12% in urine [as (S)-ibuprofen, hydroxy- and carboxyibuprofen, free and conjugated forms]. Small amounts of (R)-ibuprofen were detected in bile after intraduodenal administration of (R)-ibuprofen only (1.8% of dose). In short, the unidirectional inversion of R-ibuprofen appears to occur systemically rather than presystemically in dogs.  相似文献   

16.
An enhanced responsiveness to increases in cerebrospinal fluid (CSF) Na+ by high salt intake may contribute to salt-sensitive hypertension in Dahl salt-sensitive (S) rats. To test this hypothesis, sympathetic and pressor responses to acute and chronic increases in CSF Na+ were evaluated. In conscious young (5-6 wk old) and adult (10-11 wk old) Dahl S and salt-resistant (R) rats as well as weight-matched Wistar rats, hemodynamic [blood pressure (BP) and heart rate (HR)] and sympathetic [renal sympathetic nerve activity (RSNA)] responses to 10-min intracerebroventricular infusions of artificial CSF (aCSF) and Na+-rich aCSF (containing 0.2-0.45 M Na+) were evaluated. Intracerebroventricular Na+-rich aCSF increased BP, RSNA, and HR in a dose-related manner. The extent of these increases was significantly larger in Dahl S versus Dahl R or Wistar rats and young versus adult Dahl S rats. In a second set of experiments, young Dahl S and R rats received a chronic intracerebroventricular infusion of aCSF or Na+-rich (0.8 M) aCSF (5 microl/h) for 14 days, with the use of osmotic minipumps. On day 14 in conscious rats, CSF was sampled and BP, HR, and RSNA were recorded at rest and in response to air stress, intracerebroventricular alpha2-adrenoceptor agonist guanabenz, intracerebroventricular ouabain, and intravenous phenylephrine and nitroprusside to estimate baroreflex function. The infusion of Na+-rich aCSF versus aCSF increased CSF Na+ concentration to the same extent but caused severe versus mild hypertension in Dahl S and Dahl R rats, respectively. After central Na+ loading, hypothalamus "ouabain" significantly increased in Dahl S and only tended to increase in Dahl R rats. Moreover, sympathoexcitatory and pressor responses to intracerebroventricular exogenous ouabain were attenuated by Na+-rich aCSF to a greater extent in Dahl S versus Dahl R rats. Responses to air-jet stress or intracerebroventricular guanabenz were enhanced by Na+-rich aCSF in both strains, but the extent of enhancement was significantly larger in Dahl S versus Dahl R. Na+-rich aCSF impaired arterial baroreflex control of RSNA more markedly in Dahl S versus R rats. These findings indicate that genetic control of mechanisms linking CSF Na+ with brain "ouabain" is altered in Dahl S rats toward sympathetic hyperactivity and hypertension.  相似文献   

17.
The K-region trans-5,6-dihydrodiols formed in the metabolism of 12-methylbenz[a]anthracene (12-MBA) by liver microsomal preparations from untreated, phenobarbital-treated and 3-methylcholanthrene-treated male Sprague-Dawley rats were found by chiral stationary-phase h.p.l.c. (c.s.p.-h.p.l.c.) analyses to contain (5S,6S)/(5R,6R) enantiomer ratios of 93:7, 88:12 and 97:3 respectively. The absolute stereochemistry of a 12-MBA trans-5,6-dihydrodiol enantiomer was elucidated by the exciton-chirality c.d. method. The 5,6-epoxides formed in the metabolism of 12-MBA by liver microsomal preparations from untreated, phenobarbital-treated and 3-methylcholanthrene-treated male Sprague-Dawley rats in the presence of the epoxide hydrolase inhibitor 3,3,3-trichloropropylene 1,2-oxide were isolated from a mixture of metabolites by normal-phase h.p.l.c., and their (5S,6R)/(5R,6S) enantiomer ratios were found by c.s.p.-h.p.l.c. analyses to be 73:27, 78:22 and 99:1 respectively. The absolute configurations of 12-MBA 5,6-epoxide enantiomers, resolved by c.s.p.-h.p.l.c., were determined via high-resolution (500 MHz) proton-n.m.r. and c.d. spectral analyses of the two isomeric methoxylation products derived from each of the 12-MBA 5,6-epoxide enantiomers. Enantiomeric pairs of the two methoxylation products were resolved by c.s.p.-h.p.l.c. The results indicate that enantiomeric 5S,6R-epoxide and 5S,6S-dihydrodiol were the major enantiomers preferentially formed in the metabolism at the K-region 5,6-double bond of 12-MBA by all three rat liver microsomal preparations. Optically pure 12-MBA 5S,6R-epoxide was hydrated predominantly at the C(6) position (R centre) to form 12-MBA trans-5,6-dihydrodiol with a (5S,6S)/(5R,6R) enantiomer ratio of 97:3. However, optically pure 12-MBA 5R,6S-epoxide was hydrated nearly equally at both C(5) and C(6) positions to form 12-MBA trans-5,6-dihydrodiol with a (5S,6S)/(5R,6R) enantiomer ratio of 57:43.  相似文献   

18.
The K-region 5,6-epoxides, formed in the metabolism of benzo[c]phenanthrene (BcPh) in the presence of an epoxide hydrolase inhibitor 3,3,3-trichloropropylene 1,2-oxide (TCPO) by liver microsomes from untreated, phenobarbital-treated, 3-methylcholanthrene-treated, and polychlorinated biphenyls (Aroclor 1254)-treated rats of the Sprague-Dawley and the Long-Evans strains, were found by chiral stationary phase high-performance liquid chromatography analyses to be enriched (58-72%) in the 5S, 6R enantiomer. In the absence of TCPO, the metabolically formed BcPh trans-5,6-dihydrodiol was enriched (78-86%) in the 5S,6S enantiomer. The major enantiomer of the BcPh 3,4-epoxide metabolite was found to be enriched in the 3S,4R enantiomer which undergoes racemization under the experimental conditions. The major enantiomer of the 5,6-dihydrodiol metabolite was elucidated by the exciton chirality circular dichroism (CD) method to have a 5S,6S absolute stereochemistry. Absolute configurations of enantiomeric methoxylation products derived from each of the two BcPh 5,6-epoxide enantiomers. Optically pure BcPh 5S,6R-epoxide was enzymatically hydrated exclusively at the C6 position to form an optically pure BcPh 5S,6S-dihydrodiol. However, optically pure BcPh 5R,6S-epoxide was hydrated at both C5 and C6 positions to form a BcPh trans-5,6-dihydrodiol with a (5S,6S):(5R,6R) enantiomer ratio of 32:68.  相似文献   

19.
A selective, accurate and reproducible high-performance liquid chromatographic (HPLC) method for the separation of individual enantiomers of DRF 2725 [R(+)-DRF 2725 and S(-)-DRF 2725 or ragaglitazar] was obtained on a chiral HPLC column (Chiralpak). During method optimization, the separation of enantiomers of DRF 2725 was investigated to determine whether mobile phase composition, flow-rate and column temperature could be varied to yield the base line separation of the enantiomers. Following liquid-liquid extraction, separation of enantiomers of DRF 2725 and internal standard (I.S., desmethyl diazepam) was achieved using an amylose based chiral column (Chiralpak AD) with the mobile phase, n-hexane-propanol-ethanol-trifluoro acetic acid (TFA) in the ratio of 89.5:4:6:0.5 (v/v). Baseline separation of DRF 2725 enantiomers and I.S., free from endogenous interferences, was achieved in less than 25 min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of each enantiomer to I.S. was used for quantification of plasma samples. Nominal retention times of R(+)-DRF 2725, S(-)-DRF 2725 and I.S. were 15.8, 17.7 and 22.4 min, respectively. The standard curves for DRF 2725 enantiomers were linear (R(2) > 0.999) in the concentration range 0.3-50 microg/ml for each enantiomer. Absolute recovery, when compared to neat standards, was 70-85% for DRF 2725 enantiomers and 96% for I.S. from rat plasma. The lower limit of quantification (LLOQ) for each enantiomers of DRF 2725 was 0.3 microg/ml. The inter-day precisions were in the range of 1.71-4.60% and 3.77-5.91% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. The intra-day precisions were in the range of 1.06-11.5% and 0.58-12.7% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 83.4-113% and 83.3-113% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Both enantiomers and I.S. were stable in the battery of stability studies viz., bench-top (up to 6 h), auto-sampler (up to 12 h) and freeze/thaw cycles (n = 3). Stability of DRF 2725 enantiomers was established for 15 days at -20 degrees C. The application of the assay to a pharmacokinetic study of ragaglitazar [S(-)-DRF 2725] in rats is described. It was unequivocally demonstrated that ragaglitazar does not undergo chiral inversion to its antipode in vivo in rat plasma.  相似文献   

20.
The enantiomers of K-region benz[a]anthracene (BA) 5,6-epoxide and benzo[a]pyrene (BP) 4,5-epoxide were resolved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). The K-region epoxides formed in the metabolism of BA by liver microsomes from untreated (control), phenobarbital (PB)-treated, and 3-methylcholanthrene (MC)-treated male Sprague-Dawley rats were determined by CSP-HPLC to have a 5R,6S/5S,6R enantiomer ratio of 25:75, 21:79, and 4:96, respectively. The K-region 4,5-epoxide formed in the metabolism of BP by the same rat liver microsomal preparations contained a 4R,5S/4S,5R enantiomer ratio of 48:52 (control), 40:60 (PB), and 5:95 (MC), respectively. The results indicate that various cytochrome P-450 isozymes of rat liver exhibit different stereoselective properties in catalyzing the epoxidation reactions at the K region of BA and of BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号