首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The integrase (IN) protein of the human immunodeficiency virus mediates integration of the viral DNA into the cellular genome. In vitro, this reaction can be mimicked by using purified recombinant IN and model DNA substrates. IN mediates two reactions: an endonucleolytic cleavage at each 3' end of the proviral DNA (terminal cleavage) and the joining of the linear viral DNA to 5' phosphates in the target DNA (strand transfer). Previous investigators have shown that purified IN requires Mn2+ or Mg2+ to promote strand transfer in vitro, although Mg2+ is the likely metal cofactor in vivo. IN activity in the presence of Mg2+ in vitro requires high IN concentrations and low concentrations of salt. Here, we show that the viral nucleocapsid protein NCp7 allows efficient IN-mediated strand transfer in the presence of Mg2+ at low enzyme concentrations. This potentiating effect appears to be unique to NCp7, as other small DNA-binding proteins, while capable of stimulating integration in the presence of Mn2+, all failed to stimulate strand transfer in the presence of Mg2+.  相似文献   

2.
Using purified integration protein (IN) from human immunodeficiency virus (HIV) type 1 and oligonucleotide mimics of viral and target DNA, we have investigated the DNA sequence specificity of the cleaving and joining reactions that take place during retroviral integration. The first reaction in this process is selective endonucleolytic cleaving of the viral DNA terminus that generates a recessed 3' OH group. This 3' OH group is then joined to a 5' phosphoryl group located at a break in the target DNA. We found that the conserved CA located close to the 3' end of the plus strand of the U5 viral terminus (also present on the minus strand of the U3 terminus) was required for both cleaving and joining reactions. Six bases of HIV U5 or U3 DNA at the ends of model substrates were sufficient for nearly maximal levels of selective endonucleolytic cleaving and joining. However, viral sequence elements upstream of the terminal 6 bases could also affect the efficiencies of the cleaving and joining reactions. The penultimate base (C) on the minus strand of HIV U5 was required for optimal joining activity. A synthetic oligonucleotide mimic of the putative in vivo viral "DNA" substrate for HIV IN, a molecule that contained a terminal adenosine 5'-phosphate (rA) on the minus strand, was indistinguishable in the cleaving and joining reactions from the DNA substrate containing deoxyadenosine instead of adenosine 5'-phosphate at the terminal position. Single-stranded DNA served as an in vitro integration target for HIV IN. The DNA sequence specificity of the joining reaction catalyzed in the reverse direction was also investigated.  相似文献   

3.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (~15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3'-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3'-OH processing. It follows that the IN-viral DNA complex is "trapped" by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.  相似文献   

5.
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.  相似文献   

6.
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.  相似文献   

7.
The disintegration activity of Moloney murine leukemia virus (M-MuLV) integrase (IN) was investigated through structural and sequence modifications of a Y substrate that resembles an integration intermediate. The Y substrates, constructed from individual oligonucleotides, contain a single viral long terminal repeat (LTR) joined to a nicked target DNA. Truncation of the double-stranded LTR sequences distal to the conserved 5'-CA-3' dinucleotide progressively diminished disintegration activity. M-MuLV IN was also able to catalyze disintegration of a heterologous double-stranded LTR sequence. Significantly, the activity of M-MuLV IN on single-stranded LTR Y substrates was more dependent on the sequence and length of the LTR strand than that reported for human immunodeficiency virus type 1 (HIV-1) IN. Modifications introduced at the Y-substrate junction demonstrated that the 3'-hydroxyl group at the terminus of the target strand was necessary for efficient joining of the target DNA strands. The presence of a 2'-hydroxyl group at the 3' end of the target strand, as well as a single-nucleotide gap at the LTR-target junction, reduced disintegration activity. The absence of hydroxyl groups on the terminal nucleotide abolished joining of the target strands. The results presented here suggest that M-MuLV IN disintegration activity is dependent on substantially different LTR sequence requirements than those reported for HIV-1 IN and may be mediated primarily through a structural recognition event.  相似文献   

8.
Site-directed mutagenesis of recombinant Rous sarcoma virus (RSV) integrase (IN) allowed us to gain insights into the protein-protein and protein-DNA interactions involved in reconstituted IN-viral DNA complexes capable of efficient concerted DNA integration (termed full-site). At 4 nM IN, wild-type (wt) RSV IN incorporates approximately 30% of the input donor into full-site integration products after 10 min of incubation at 37 degrees C, which is equivalent to isolated retrovirus preintegration complexes for full-site integration activity. DNase I protection analysis demonstrated that wt IN was able to protect the viral DNA ends, mapping approximately 20 bp from the end. We had previously mapped the replication capabilities of several RSV IN mutants (A48P and P115S) which appeared to affect viral DNA integration in vivo. Surprisingly, recombinant RSV A48P IN retained wt IN properties even though the virus carrying this mutation had significantly reduced integrated viral DNA in comparison to wt viral DNA in virus-infected cells. Recombinant RSV P115S IN also displayed all of the properties of wt RSV IN. Upon heating of dimeric P115S IN in solution at 57 degrees C, it became apparent that the mutation in the catalytic core of RSV IN exhibited the same thermolabile properties for 3' OH processing and strand transfer (half-site and full-site integration) activities consistent with the observed temperature-sensitive defect for integration in vivo. The average half-life for inactivation of the three activities were similar, ranging from 1.6 to 1.9 min independent of the IN concentrations in the assay mixtures. Wt IN was stable under the same heat treatment. DNase I protection analysis of several conservative and nonconservative substitutions at W233 (a highly conserved residue of the retrovirus C-terminal domain) suggests that this region is involved in protein-DNA interactions at the viral DNA attachment site. Our data suggest that the use of recombinant RSV IN to investigate efficient full-site integration in vitro with reference to integration in vivo is promising.  相似文献   

9.
10.
An in vitro integration system derived from avian leukosis virus-infected cells supports both intra- and intermolecular integration of the viral DNA. In the absence of polyethylene glycol, intramolecular integration of viral DNA molecules into themselves (autointegration) was preferred. In the presence of polyethylene glycol, integration into an exogenously supplied DNA target was greatly promoted. Analysis of integration intermediates revealed that the strand transfer mechanisms of both reactions were identical to those of retroviruses and some transposons: each 3' end of the donor molecule is joined to a 5' end of the cleaved target DNA. The immediate integration precursor appears to be linear viral DNA with the 3' ends shortened by 2 nucleotides. Finally, in the avian system, most cytoplasmic viral DNA appears to be incomplete and further DNA synthesis is required for integration in vitro.  相似文献   

11.
The in vitro assembly process for forming nucleoprotein complexes containing linear retrovirus-like DNA and integrase (IN) was investigated. Solution conditions that allowed avian myeloblastosis virus IN to efficiently pair two separate linear DNA fragments (each 487 bp in length) containing 3' OH recessed long terminal repeat termini were established. Pairing of the viral termini by IN during preincubation on ice permitted these nucleoprotein complexes to catalyze the concerted insertion of the two termini into a circular DNA target (full-site reaction), mimicking the in vivo reaction. The three major solution determinants were high concentrations of NaCl (0.33 M), 1,4-dioxane, and polyethylene glycol. The aprotic solvent dioxane (15%) was significantly better (sixfold) than 15% dimethyl sulfoxide for forming complexes capable of full-site rather than half-site integration events. Half-site reactions by IN involved the insertion of a single donor terminus into circular pGEM. Although NaCl was essential for the efficient promotion of the concerted integration reaction, dioxane was necessary to prevent half-site reactions from occurring at high NaCl concentrations. Under optimal solution conditions, the concerted integration reaction was directly proportional to a sixfold range of IN. The complexes appeared not to turn over, and few half-site donor-donor molecules were produced. In the presence of 0.15 or 0.35 M NaCl, dioxane prevented efficient 3' OH trimming of a blunt-ended donor by IN, suggesting that the complexes formed by IN with blunt-ended donors were different from those formed with donors containing 3' OH recessed termini for strand transfer. The results suggest that IN alone was capable of protein-protein and protein-DNA interactions that efficiently promote the in vitro concerted integration reaction.  相似文献   

12.
The integrase protein (IN) of human immunodeficiency virus type 1 removes two nucleotides from both 3' ends of the viral DNA (donor cleavage) and subsequently couples the newly generated 3' OH groups to phosphates in the target DNA (integration). The sequence requirements of IN for cleavage as well as for integration of viral DNA substrates have previously been studied by mutational analyses and by adduct interference assays. We extended these studies by analysis of heteroduplex oligonucleotide substrates and by missing-base analysis. We found for some base pairs that mutation of only one of the two bases and not the other affected IN activity. These base pairs center around the cleavage site. Besides donor cleavage and integration, IN can also perform "intermolecular disintegration," which has been described as the reversal of the integration reaction. We found that this reaction is independent of viral DNA sequences. In addition, the optimum spacing between the integration sites in intermolecular disintegration does not reflect the spacing found in vivo. These results indicate that this reaction is not the exact reversal of integration but rather is a sequence-independent phosphoryl transfer reaction between gapped DNA duplex molecules.  相似文献   

13.
Bera S  Vora AC  Chiu R  Heyduk T  Grandgenett DP 《Biochemistry》2005,44(46):15106-15114
The integration of retroviral DNA by the viral integrase (IN) into the host genome occurs via assembled preintegration complexes (PIC). We investigated this assembly process using purified IN and viral DNA oligodeoxynucleotide (ODN) substrates (93 bp in length) that were labeled with donor (Cy3) and acceptor fluorophores (Cy5). The fluorophores were attached to the 5' 2 bp overhangs of the terminal attachment (att) sites recognized by IN. Addition of IN to the assay mixture containing the fluorophore-labeled ODN resulted in synaptic complex formation at 14 degrees C with significant fluorescence resonance energy transfer (FRET) occurring between the fluorophores in close juxtaposition (from approximately 15 to 100 A). Subsequent integration assays at 37 degrees C with the same ODN (32P-labeled) demonstrated a direct association of a significant FRET signal with concerted insertion of the two ODNs into the circular DNA target, here termed full-site integration. FRET measurements (deltaF) show that IN binds to a particular set of 3' OH recessed substrates (type I) generating synaptic complexes capable of full-site integration that, as shown previously, exhibit IN mediated protection from DNaseI digestion up to approximately 20 bp from the ODN att ends. In contrast, IN also formed complexes with nonspecific DNA ends and loss-of-function att end substrates (type II) that had significantly lower deltaF values and were not capable of full-site integration, and lacked the DNaseI protection properties. The type II category may exemplify what is commonly understood as "nonspecific" binding by IN to DNA ends. Two IN mutants that exhibited little or no integration activity gave rise to the lower deltaF signals. Our FRET analysis provided the first direct physical evidence that IN forms synaptic complexes with two DNA att sites in vitro, yielding a complex that exhibits properties comparable to that of the PIC.  相似文献   

14.
Retrovirus intasomes purified from virus-infected cells contain the linear viral DNA genome and integrase (IN). Intasomes are capable of integrating the DNA termini in a concerted fashion into exogenous target DNA (full site), mimicking integration in vivo. Molecular insights into the organization of avian myeloblastosis virus IN at the viral DNA ends were gained by reconstituting nucleoprotein complexes possessing intasome characteristics. Assembly of IN-4.5-kbp donor complexes capable of efficient full-site integration appears cooperative and is dependent on time, temperature, and protein concentration. DNase I footprint analysis of assembled IN-donor complexes capable of full-site integration shows that wild-type U3 and other donors containing gain-of-function attachment site sequences are specifically protected by IN at low concentrations (<20 nM) with a defined outer boundary mapping ~20 nucleotides from the ends. A donor containing mutations in the attachment site simultaneously eliminated full-site integration and DNase I protection by IN. Coupling of wild-type U5 ends with wild-type U3 ends for full-site integration shows binding by IN at low concentrations probably occurs only at the very terminal nucleotides (<10 bp) on U5. The results suggest that assembly requires a defined number of avian IN subunits at each viral DNA end. Among several possibilities, IN may bind asymmetrically to the U3 and U5 ends for full-site integration in vitro.  相似文献   

15.
Integrase (IN) is responsible for one of the key stages in the replication cycle of human immunodeficiency virus type 1, namely, integration of a DNA copy of the viral RNA into the infected cell genome. IN recognizes the nucleotide sequences located at the ends of the U3 and U5 regions of long terminal repeats (LTRs) of the viral DNA and sequentially catalyzes the 3-end processing and strand transfer reactions. Analogs of U5 regions containing non-nucleoside insertions have been used to study the interaction between IN and viral DNA. Substrate modification has been demonstrated to have almost no effect on the rate of DNA binding by IN. However, the removal of heterocyclic bases from positions 5 and 6 of the substrate molecule and from position 3 of the processed strand almost completely inhibits IN enzymatic activity, which indicates the importance of these bases for the formation of an active enzyme–substrate complex. By contrast, modification of the third base of the nonprocessed strand stimulates 3-processing. Since the base removal disturbs the complementary and stacking interactions in DNA, these results indicate that double-helix destabilization near the cleaved bond promotes 3-end processing.  相似文献   

16.
17.
We report the efficient concerted integration of a linear virus-like DNA donor into a 2.8 kbp circular DNA target by integrase (IN) purified from avian myeloblastosis virus. The donor was 528 bp, contained recessed 3' OH ends, was 5' end labeled, and had a unique restriction site not found in the target. Analysis of concerted (full-site) and half-site integration events was accomplished by restriction enzyme analysis and agarose gel electrophoresis. The donor also contained the SupF gene that was used for genetic selection of individual full-site recombinants to determine the host duplication size. Two different pathways, involving either one donor or two donor molecules, were used to produce full-site recombinants. About 90% of the full-site recombinants were the result of using two donor molecules per target. These results imply that juxtapositioning an end from each of two donors by IN was more efficient than the juxtapositioning of two ends of a single donor for the full-site reaction. The formation of preintegration complexes containing integrase and donor on ice prior to the addition of target enhanced the full-site reaction. After a 30 min reaction at 37 degrees C, approximately 20-25% of all donor/target recombinants were the result of concerted integration events. The efficient production of full-site recombinants required Mg2+; Mn2+ was only efficient for the production of half-site recombinants. We suggest that these preintegration complexes can be used to investigate the relationships between the 3' OH trimming and strand transfer reactions.  相似文献   

18.
Chen H  Engelman A 《Journal of virology》2000,74(17):8188-8193
Two activities of retroviral integrase, 3' processing and DNA strand transfer, are required to integrate viral cDNA into a host cell chromosome. Integrase activity has been analyzed in vitro using purified protein and recombinant DNA substrates that model the U3 and U5 ends of viral cDNA or by using viral preintegration complexes (PICs) that form during virus infection. Numerous studies have investigated changes in integrase or viral DNA for effects on both 3' processing and DNA strand transfer activities using purified protein, but similar analyses have not been carried out using PICs. Here, we analyzed PICs from human immunodeficiency virus type 1 (HIV-1) strain 604del, an integration-defective mutant lacking 26 bp of U5, and revE1, a revertant of 604del containing an additional 19-bp deletion, for levels of 3' processing activity that occurred in infected cells and for levels of in vitro DNA strand transfer activity. Whereas revE1 supported one-third to one-half of the level of wild-type DNA strand transfer activity, the level of 604del DNA strand transfer activity was undetectable. Surprisingly, integrase similarly processed the 3' ends of 604del and revE1 in vivo. We therefore conclude that 604del is blocked in its ability to replicate in cells after the 3' processing step of retroviral integration. Whereas Western blotting showed that wild-type, revE1, and 604del PICs contained similar levels of integrase protein, Mu-mediated PCR footprinting revealed only minimal protein-DNA complex formation at the ends of 604del cDNA. We propose that 604del is replication defective because proteins important for DNA strand transfer activity do not stably associate with this cDNA after in vivo 3' processing by integrase.  相似文献   

19.
Substrate specificity of Ty1 integrase.   总被引:6,自引:2,他引:4       下载免费PDF全文
Integration of the Saccharomyces cerevisiae retrotransposon Ty1 requires the element-encoded integrase (IN) protein, which is a component of cytoplasmic virus-like particles (VLPs). Using purified recombinant Ty1 IN and an oligonucleotide integration assay based on Ty1 long terminal repeat sequences, we have compared IN activity on substrates having either wild-type or altered donor ends. IN showed a marked preference for blunt-end substrates terminating in an A:T pair over substrates ending in a G:C pair or a 3' dideoxyadenosine. VLP activity on representative substrates also showed preference for donor strands which have an adenosine terminus. Staggered-end substrates showed little activity when nucleotides were removed from the end of the wild-type donor strand, but removal of one nucleotide from the complementary strand did not significantly diminish activity. Removal of additional nucleotides from the complementary strand reduced activity to minimal detection levels. These results suggest that the sequence specificity of Ty1 IN is not stringent in vitro. The absence of Ty1 IN-mediated 3' dinucleotide cleavage, a characteristic of retroviral integrases, was demonstrated by using selected substrates. In addition to the forward reaction, both recombinant IN and VLP-associated IN carry out the reverse disintegration reaction with long terminal repeat-based dumbbell substrates. Disintegration activity exhibits sequence preferences similar to those observed for the forward reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号