首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyadenylation and degradation of mRNA in the chloroplast.   总被引:10,自引:0,他引:10  
  相似文献   

2.
3.
Processing and degradation of chloroplast mRNA   总被引:27,自引:0,他引:27  
Monde RA  Schuster G  Stern DB 《Biochimie》2000,82(6-7):573-582
  相似文献   

4.
5.
Plastid mRNA stability is tightly regulated by external signals such as light. We have investigated the biochemical mechanism responsible for the dark-induced decrease of relative half-lives for mRNAs encoding photosynthetic proteins. Protein fractions isolated from plastids of light-grown and dark-adapted plants correctly reproduced an RNA degradation pathway in the dark that is downregulated in the light. This dark-dependent pathway is initiated by endonucleolytic cleavages in the petD mRNA precursor substrate proximal to a region that can fold into a stem–loop structure. Polynucleotide phosphorylase (PNPase) polyadenylation activity was strongly increased in the protein fraction isolated from plastids in dark-adapted plants, but interestingly PNPase activity was not required for the initiation of dark-induced mRNA degradation. A protein factor present in the protein fraction from plastids of light-grown plants could inactivate the endonuclease activity and thereby stabilize the RNA substrate in the protein fraction from plastids of dark-adapted plants. The results show that plastid mRNA stability is effectively controlled by the regulation of a specific dark-induced RNA degradation pathway.  相似文献   

6.
Polyadenylation sites for influenza virus mRNA.   总被引:15,自引:27,他引:15       下载免费PDF全文
  相似文献   

7.
Chloroplasts have a complex enzymatic machinery to adjust the relative half-life of their mRNAs to environmental signals. Soluble protein extracts from spinach (Spinacia oleracea L.) chloroplasts that correctly reproduce in vitro the differential mRNA stability observed in vivo were analyzed using shotgun proteomics to identify the proteins that are potentially involved in this process. The combination of a novel strategy for the database-independent detection of proteins from MS/MS data with standard database searches allowed us to identify 243 proteins with high confidence, which include several nucleases and RNA binding proteins but also proteins that have no reported function in chloroplast mRNA metabolism. Characterization of enzyme activities that adjust mRNA stability in response to illumination revealed that the dark-induced RNA degradation pathway involves enzymatic activities that differ from those that direct RNA processing and stabilization in the light. Dark-induced mRNA degradation comprises a MgCl2-independent and a MgCl2-dependent step, which releases nucleoside di- and monophosphates from the petD 3'-UTR precursor substrate. RNA degradation can be blocked with RNasin, a potent inhibitor of eukaryotic ribonucleases, suggesting that chloroplast mRNA degradation involves enzymes that are distinct from those found in prokaryotic-type RNA degradation. On the basis of the identified proteins and the in vitro characterization of the RNA degradation activities, we discuss scenarios and components that potentially determine plastid mRNA stability.  相似文献   

8.
Polyadenylation of Vesicular Stomatitis Virus mRNA   总被引:10,自引:8,他引:2  
  相似文献   

9.
The addition of poly(A)-rich sequences to endonuclease cleavage products of chloroplast mRNA has recently been suggested to target the polyadenylated RNA for rapid exonucleolytic degradation. This study analyzed whether the addition of a poly(A)-rich tail to RNA molecules is required for degradation by chloroplast exonuclease(s). In lyzed chloroplasts from spinach, addition of the polyadenylation inhibitor, cordycepin triphosphate (3′-dATP), inhibited the degradation of psbA and rbcL mRNAs. Furthermore, degradation intermediates generated by endonucleolytic cleavages accumulated. Similar results were obtained when yeast tRNA was added to the mRNA degradation system as a non-specific exoribonuclease inhibitor. Nevertheless, the stabilization mechanisms differ: while tRNA directly affects the exonuclease activity, 3′dATP has an indirect effect by inhibiting polyadenylation. The results indicate that the addition of poly(A)-rich sequences to endonucleolytic cleavage products of chloroplast mRNA is required to target these RNAs for rapid exonucleolytic degradation. Together with previous work, the data reported here support a model for mRNA degradation in the chloroplast in which endonucleolytic cleavages are followed by the addition of poly(A)-rich sequences to the proximal cleavage products, targeting these RNAs for rapid exonucleolytic decay.  相似文献   

10.
11.
In humans, mRNA polyadenylation involves the participation of about 20 factors in four main complexes that recognize specific RNA sequences. Notably, CFIm25, CPSF73, and PAP have essential roles for poly(A) site selection, mRNA cleavage, and adenosine residues polymerization. Besides the relevance of polyadenylation for gene expression, information is scarce in intestinal protozoan parasites that threaten human health. To better understand polyadenylation in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum, which represent leading causes of diarrhea worldwide, genomes were screened for orthologs of human factors. Results showed that Entamoeba histolytica and C. parvum have 16 and 12 proteins out of the 19 human proteins used as queries, respectively, while G. lamblia seems to have the smallest polyadenylation machinery with only six factors. Remarkably, CPSF30, CPSF73, CstF77, PABP2, and PAP, which were found in all parasites, could represent the core polyadenylation machinery. Multiple genes were detected for several proteins in Entamoeba, while gene redundancy is lower in Giardia and Cryptosporidium. Congruently with their relevance in the polyadenylation process, CPSF73 and PAP are present in all parasites, and CFIm25 is only missing in Giardia. They conserve the functional domains and predicted folding of human proteins, suggesting they may have the same roles in polyadenylation.  相似文献   

12.
13.
The fast turnover of mRNA permits rapid changes in the pattern of gene expression. In procaryotes, many enzymes involved in mRNA degradation have been identified and some of these endo- and exo-ribonucleases are now being intensively studied. Some of the structural features of mRNA that influence decay rates have also recently been defined. Although important components of the decay pathway are still elusive, a coherent and simple model for mRNA decay has emerged in the last few years.  相似文献   

14.
15.
Chloroplast development involves changes in the stability of specific plastid mRNAs. To understand how the half-lives of these mRNAs are modified, several laboratories are investigating how plastid mRNAs are degraded. This has led to the isolation of a high-molecular-weight complex that contains an endoribonuclease and a 3'-5' exoribonuclease, and the discovery that efficient mRNA degradation requires polyadenylation. These findings are similar to recent discoveries in Escherichia coli. However, an important difference between the two systems is that chloroplast mRNA degradation involves nuclear-encoded proteins. Modification of these proteins could provide the mechanism for altering plastid-mRNA half-lives in response to developmental stimuli.  相似文献   

16.
17.
Oogenesis of amphibians is an atypical situation in which histone mRNA is polyadenylated. The poly(A) tract on H4 mRNA has been examined by Sl nuclease analysis. Throughout oogenesis the poly(A) tract is very short, and nonexistent on some mRNA molecules. The poly(A) tract is completely removed during maturation of the oocyte, and is absent in embryos and cultured cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号